Design and characterization of tectones based on guanidinium-oxoanion interactions for the assembly in water [Elektronische Ressource] / Laxman H. Malge
136 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Design and characterization of tectones based on guanidinium-oxoanion interactions for the assembly in water [Elektronische Ressource] / Laxman H. Malge

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
136 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

TECHNISCHE UNIVERSITÄT MÜNCHEN DEPARTMENT FÜR CHEMIE Design and Characterization of Tectones based on Guanidinium-Oxoanion Interactions for the Assembly in Water Laxman H. Malge Vollständiger Abdruck der von der Fakultät für Chemie der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. M. Schuster Prüfer der Dissertation: 1. Univ.-Prof. Dr. F. P. Schmidtchen 2. apl. Prof. Dr. P. Härter Die Dissertation wurde am 17.06.2010 bei der Technischen Universität München eingereicht und durch die Fakultät für Chemie am 14.07.2010 angenommen. To my parents Acknowledgements Work presented in this thesis was carried out from April 2006 to April 2010 in the Department of Organic Chemistry and Biochemistry at Technical University of Munich. I would like to thank Prof. Dr. F. P. Schmidtchen for his continuous encouragement and support. The work would not have been completed without his patience and understanding.

Informations

Publié par
Publié le 01 janvier 2010
Nombre de lectures 41
Langue English
Poids de l'ouvrage 2 Mo

Extrait

TECHNISCHE UNIVERSITÄT MÜNCHEN
DEPARTMENT FÜR CHEMIE


Design and Characterization of Tectones based on
Guanidinium-Oxoanion Interactions for the Assembly
in Water


Laxman H. Malge


Vollständiger Abdruck der von der Fakultät für Chemie der Technischen Universität München
zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften
genehmigten Dissertation.



Vorsitzender: Univ.-Prof. Dr. M. Schuster
Prüfer der Dissertation: 1. Univ.-Prof. Dr. F. P. Schmidtchen
2. apl. Prof. Dr. P. Härter


Die Dissertation wurde am 17.06.2010 bei der Technischen Universität München eingereicht
und durch die Fakultät für Chemie am 14.07.2010 angenommen.










































































To my parents
















































































Acknowledgements


Work presented in this thesis was carried out from April 2006 to April 2010 in the Department of
Organic Chemistry and Biochemistry at Technical University of Munich.

I would like to thank Prof. Dr. F. P. Schmidtchen for his continuous encouragement and support. The
work would not have been completed without his patience and understanding. His vast experience in
the field of organic and supramolecular chemistry helped me to overcome every obstacle during the
work. His timely advice during the difficult times helped me a lot to come out.

I would like to thank Prof. Vladimir Kral for fruitful discussions during his short visits to Munich.

My special thanks go to Dr. Tomas Briza, Dr. Robert Kaplanek and Dr. Bohumil Dolensky for the long
discussions held during their stay in the laboratory and outside.

I would like to thank Mrs. Otte, Mr. Kaviani and Mr. Cordes for providing me mass spectra of the
compounds prepared in this work. I would also be thankful to Dr. Bettina Bechlars for making available
the X-ray crystal structure.

I would take the opportunity to thank Dr. Vinod Jadhav and Dr. Wiebke Antonius for their continuous
help throughout these years. I wish to thank Ashish Tiwari for his help during the stay in laboratory.

I thank all my friends Dr. Sriram Kotkar, Dr. Nagendra Kondekar, Dr. Kulbhushan Durugkar, Dr.
Rameshwar Patil, Dr. Namdev Vatmurge, Dr. Amol Kendhale, Mr. Awadut Giri, Mr. Pandurang
Chouthaiwale and Mr. Ganesh Jogdand for their unwavering support extended to me since campus
days. I am indebted to my brother Mr. M. L. Chapale for his belief in my ability to do the Ph. D.

I would be grateful to my parents and family members for their love and constant encouragement
throughout my studies.

Finally I would like to thank my wife Pallavi for her love, affection and unassuming support extended to
me during this work.
TABLE OF CONTENTS
1. Introduction .............................................................. 1
1.1. Intermolecular non-covalent interactions ...................................................1
1.1.1. Hydrogen bonding ............................................................................................................ 2
1.1.2. Hydrophobic effect............................................................................................................ 3
1.1.3. Van der Waals forces ....................................................................................................... 5
1.1.4. π-π interactions ................................................................................................................ 5
1.1.5. Electrostatic effects........................................................................................................... 6
1.2. Survey of artificial receptors for polar solvents...........................................7
2. Aim of this work..................................................... 20
3. Synthesis ................................................................24
3.1 Synthesis of the hydrophilic bicyclic guanidinium host 34 ...........................24
3.2 Synthesis of the hydrophilic bicyclic guanidinium host 51 ...........................25
3.3 Synthesis of the tetra-cyclic guanidinium host 68........................................32
3.4 Attempted synthesis of the lactone guest 36...............................................32
3.5 Synthesis of the aromatic phosphinate guest 37.........................................38
4. Results and discussion of binding studies ........47
4.1 ITC titrations in Water .................................................................................48
4.1.1 ITC titration of host 28 with guest 37 in Water ....................................................................... 48
4.1.2 ITC titration of host 28 with guest 119 in Water ..................................................................... 49
4.1.3 ITC titration of host 34 with guest 37 in Water ....................................................................... 50
4.2 ITC titrations in DMSO................................................................................51
4.2.1 ITC titration of host 28 with guest 37 in DMSO...................................................................... 51
4.2.2 ITC titration of host 34 with guest 37 in DMSO...................................................................... 53
4.2.3 ITC titration of host 51 with guest 37 in DMSO...................................................................... 53
4.2.4 ITC titration of host 51 with guest 119 in DMSO.................................................................... 54
4.3 MD simulations ...........................................................................................56
4.3.1 MD simulations in H O .......................................................................................................... 57 2
4.3.2 MD simulations in DMSO ...................................................................................................... 59
4.3.3 MD simulations in MeOH....................................................................................................... 61
4.3.4 MD simulations in CHCl ....................................................................................................... 63 35. Experimental Part .................................................. 66
5.1 Reagents, Methods and Materials ..............................................................66
5.2 Experimental Procedures............................................................................69
5.3 Experiments in-silico.................................................................................103
5.3.1 Topology file for guanidinium host 51.................................................................................. 103
5.3.2 Topology file for guanidinium host 34.................................................................................. 107
5.3.3 Topology file for guanidinium host 28.................................................................................. 109
5.3.4 Topology file for phosphinate guest 37................................................................................ 111
6. Summary...............................................................116
7. References............................................................119
Abbreviations
Ac Acetyl
AHP Anilinium hypophosphinate
Ala Alanine
AMBER Assisted Model Building with Energy Refinement
Arg Arginine
arom aromatic
Bn Benzyl
Boc tert-Butoxycarbonyl
bp Boiling Point
BTSA Bis(trimethylsilyl)acetamide
BTSP bis(trimethylsilyl)phosphonite
calc calculated
CFF Consistent Force Field
CHARMM Chemistry at Harvard Molecular Mechanics
chemical shift
d Dublett
DABAL Aluminium-1,4-Diazabicyclo[2.2.2]-octane
DABCO 1,4-Diazabicyclo[2.2.2]-octane
DCM Dichloromethane
de diastereomeric excess
DMF N,N-Dimethylformamide
DMSBT dimethylsilyl-bis (trifluoromethanesulfonate)
DMSO Dimethylsulfoxide
DNA Desoxyribonucleic acid
DPPA Diphenyl phosphoryl azide
dppf 1,1'-Bis(diphenylphosphino)ferrocene
dppp 1,3-bis(diphenylphosphino)propane
DVB Divinylbenzene
EDIPA Ethylenediisopropylamine
ESI Electrospray Ionization
Et Ethyl
Fig Figure
FT Fouriertransformation
GROMACS Groningen Machine for Chemical Simulations
HMDS Hexamethyldisilazane
HMPA Hexameth

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents