Development of an energy module for the multi-objective optimisation of complex distillation processes [Elektronische Ressource] = Zur Entwicklung eines Energiemoduls für komplexe Destillations-Verfahren unter Berücksichtigung der multikriteriellen Optimierung / by Tijani, Alhassan Salami
197 pages
English

Development of an energy module for the multi-objective optimisation of complex distillation processes [Elektronische Ressource] = Zur Entwicklung eines Energiemoduls für komplexe Destillations-Verfahren unter Berücksichtigung der multikriteriellen Optimierung / by Tijani, Alhassan Salami

Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres
197 pages
English
Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres

Description

Development of an Energy Module for the Multi-objective Optimisation of complex distillation Processes This dissertation is approved by the Faculty of Environmental Sciences and Process Engineering at the Brandenburg University of Technology Cottbus in partial fulfillment of the requirement for the award of the academic degree of Doctor of Engineering (Dr.-Ing.) in Process Engineering by (M.Sc.) Tijani, Alhassan Salami from Accra, Ghana Supervisor: Prof. Dr.-Ing. Werner Witt Supervisor: Dr.-Ing. Jörg Schmuhl (Visiting Professor) th Date of oral examination: 4 June, 2010 Zur Entwicklung eines Energiemoduls für komplexer Destillations-Verfahren unter Berücksichtigung der multikriteriellen Optimierung Von der Fakultät für Umweltwissenschaften und Verfahrenstechnik der Brandenburgischen Technischen Universität Cottbus zur Erlangung des akademischen Grades eines Doktor-Ingenieurs (Dr.-Ing.) genehmigte Dissertation vorgelegt von (M.Sc.) Tijani, Alhassan Salami aus Accra, Ghana Gutachter: Prof. Dr.-Ing. Werner Witt Gutachter: Dr.-Ing. Jörg Schmuhl ( Gastprofessor) Tag der mündlichen Prüfung: 4. Juni 2010 iiDeclaration I hereby declare that my Doctoral Thesis is the result of my research work under the supervision of Prof. Dr.-Ing. Wernerho is my main supervisor, and Visiting Professor Dr.-Ing. Jörg Schmuhl as my second supervisor.

Informations

Publié par
Publié le 01 janvier 2010
Nombre de lectures 18
Langue English
Poids de l'ouvrage 2 Mo

Extrait

Development of an Energy Module for the Multi-objective Optimisation of
complex distillation Processes





This dissertation is approved by the Faculty of Environmental Sciences and Process
Engineering at the Brandenburg University of Technology Cottbus in partial fulfillment of the
requirement for the award of the academic degree of Doctor of Engineering (Dr.-Ing.) in
Process Engineering



by

(M.Sc.)
Tijani, Alhassan Salami

from Accra, Ghana









Supervisor: Prof. Dr.-Ing. Werner Witt
Supervisor: Dr.-Ing. Jörg Schmuhl (Visiting Professor)




th Date of oral examination: 4 June, 2010 Zur Entwicklung eines Energiemoduls für komplexer Destillations-
Verfahren unter Berücksichtigung der multikriteriellen Optimierung





Von der Fakultät für Umweltwissenschaften und Verfahrenstechnik der Brandenburgischen
Technischen Universität Cottbus zur Erlangung des akademischen Grades eines Doktor-
Ingenieurs (Dr.-Ing.) genehmigte Dissertation




vorgelegt von

(M.Sc.)
Tijani, Alhassan Salami

aus Accra, Ghana







Gutachter: Prof. Dr.-Ing. Werner Witt
Gutachter: Dr.-Ing. Jörg Schmuhl ( Gastprofessor)




Tag der mündlichen Prüfung: 4. Juni 2010
iiDeclaration

I hereby declare that my Doctoral Thesis is the result of my research work under the
supervision of Prof. Dr.-Ing. Wernerho is my main supervisor, and Visiting Professor Dr.-Ing.
Jörg Schmuhl as my second supervisor. All literature sources used for the writing of this
dissertation have been adequately referenced. Also justified is the fact that this work is in no
way a reproduction in part or whole of any work ever presented for the award of a degree.























Sign………………. Date……………………
Alhassan Salami Tijani
Faculty of Environmental Sciences and Process Engineering
Chair of Plant Design and Safety Technology, BTU Cottbus Germany
iii Acknowledgement
All praises be to Almighty Allah (God), the Creator and Sustainer of this universe, First of all,
I praise and thank Almighty Allah for motivating and guiding me on the right path throughout
my doctorate research work, I praise Him and further seek His help in any moment of my life.
May the peace and choicest blessings of Allah be upon our Prophet Muhammad (saw), his
family and companions Amin.
I will like to express my deepest appreciation and special thanks to my supervisor, Prof. Dr.-
Ing. Werner Witt for his wonderful support and contributions towards the success of my
doctorate research work. It has been a great pleasure to work with him. My dear mother,
Alhaja Senabu Gbadamosi and my entire family would like to say a very big thanks to my
supervisor. His contribution towards my success is very much appreciated. I would like to
acknowledge and express my gratitude also to my advisor Dr.-Ing. L. Dietzsch for his
important information and support during scientific and technical discussions.
I would like to thank Prof. Dr.-Ing. Jörg Schmuhl for taking over the role of second
supervisor, his contributions and advices are most appreciated.
I will like to thank all my scientific research colleagues at the Chair of Plant Design and
Safety Technology who did not hesitate to help me whenever the need arises.
I am particularly grateful to my parents and family for their love, encouragements and support
they gave me. It is because of their prayers that enable me to complete this doctorate work.
Finally I would like to thank all my friends for their great love and encouragement during my
stay in Cottbus.







ivDedication

This scientific research work is dedicated to my Almighty Allah (God) and His Prophet
Muhammad (SAW).

ivTable of Content
ACKNOWLEDGEMENT .................................................................................................................................. IV
TABLE OF CONTENT ........................................................................................................................................ V
ABSTRACT ........................................................................................................................................................... 3
KURZFASSUNG .................................................................................................................................................. 4
1 INTRODUCTION ....................................................................................................................................... 5
1.1 MOTIVATION ........................................................................................................................................ 7
1.2 OBJECTIVES .......................................................................................................................................... 8
1.3 STRUCTURE OF THIS THESIS ................................................................................................................ 10
2 FUNDAMENTALS ................................................................................................................................... 12
2.1 ENERGY EFFICIENT DISTILLATION PROCESS DESIGN ............................................................................ 12
2.2 THE USE OF ENERGY AS APPLIED TO DISTILLATION PROCESS .............................................................. 13
2.3 GENERAL FUNDAMENTALS ................................................................................................................. 14
2.3.1 Energy bandwidth analysis ........................................................................................................... 14
2.3.2 Minimum (reversible) work requirement for separation ............................................................... 15
2.3.3 Exergy ........................................................................................................................................... 17
2.3.3.1 Exergy of flowing stream of matter................................................................................................ 17
2.3.3.2 Exergy of heat transfer ................................................................................................................... 19
2.3.3.3 Exergy of electrical energy ............................................................................................................ 19
2.3.3.4 Exergy destructions in distillation columns.................................................................................... 19
2.3.3.5 Exergy efficiency ........................................................................................................................... 19
2.3.4 Balances ........................................................................................................................................ 20
2.3.4.1 Energy balance ............................................................................................................................... 20
2.3.4.2 Exergy balance ............................................................................................................................... 20
2.4 ENVIRONMENTAL ASPECT IN PLANT DESIGN ....................................................................................... 21
2.4.1 Potential Environmental Impacts (PEI) ........................................................................................ 21
2.4.1.1 The Waste Reduction Algorithm (WAR) ....................................................................................... 22
2.4.1.2 Simplified PEI balance for a chemical process .............................................................................. 23
2.4.1.3 Integration of exergy into the WAR algorithm............................................................................... 25
2.5 SOLAR THERMAL POWER PLANT ......................................................................................................... 26
2.5.1 Greenius simulation environment ................................................................................................. 27
2.5.2 Technology selected and site location ........................................................................................... 28
2.5.3 Storage system ............................................................................................................................... 32
2.5.4 Mathematical model and system simulation .................................................................................. 32
2.5.4.1 Concentration ratio C ..................................................................................................................... 33
2.5.4.2 Thermal energy of a parabolic trough collector ............................................................................. 33
2.5.4.3 Losses in parabolic trough collectors .....................................................................................

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents