Embedding the DFSZ-Axino in mSUGRA with R-parity violation and its implications for dark matter [Elektronische Ressource] / vorgelegt von Branislav Poletanovi´c
155 pages
English

Embedding the DFSZ-Axino in mSUGRA with R-parity violation and its implications for dark matter [Elektronische Ressource] / vorgelegt von Branislav Poletanovi´c

Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres
155 pages
English
Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres

Description

Embedding the DFSZ–Axino in mSUGRA withR–Parity Violation and its implications for DarkMatterDissertationzurErlangung des Doktorgrades (Dr. rer. nat.)derMathematisch-Naturwissenschaftlichen Fakult¨atderRheinischen Friedrich-Wilhelms-Universit¨atzu Bonnvorgelegt vonBranislav Poletanovi´cgeb. inGummersbachBonn 2010Angefertigt mit Genehmigung der Mathematisch-NaturwissenschaftlichenFakult¨at der Rheinischen Friedrich-Wilhelms-Universit¨at Bonn.1. Gutachter: Prof. Herbert Karl Dreiner2. Gutachter: Prof. Hans-Peter NillesTag der Promotion: 20.12.2010Tag der Abgabe: 02.11.2010Erscheinungsjahr: 2011Ich versichere, dass ich die Arbeit selbstst¨andigverfasst und keine anderenals die angegebenen Quellen und Hilfsmittel benutzt sowie die Zitatekenntlich gemacht habe.To My FamilyAcknowledgementsFirst of all, I would like to thank Prof. Herbi K. Dreiner for his support and for of-fering me the possibility to do research on an interesting question in modern physics.During this time I benefited from his expertise and fromuseful discussions. I also enjoyedour discussions apart from physics.I would also like to thank Prof. Hans-Peter Nilles for being the second referee. Fur-thermore I appreciate that Prof. Klaus Desch and Prof. Martin Langer agreed to be theexaminers for the final viva.

Sujets

Informations

Publié par
Publié le 01 janvier 2011
Nombre de lectures 17
Langue English
Poids de l'ouvrage 1 Mo

Extrait

Embedding the DFSZ–Axino in mSUGRA with
R–Parity Violation and its implications for Dark
Matter
Dissertation
zur
Erlangung des Doktorgrades (Dr. rer. nat.)
der
Mathematisch-Naturwissenschaftlichen Fakult¨at
der
Rheinischen Friedrich-Wilhelms-Universit¨at
zu Bonn
vorgelegt von
Branislav Poletanovi´c
geb. in
Gummersbach
Bonn 2010Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen
Fakult¨at der Rheinischen Friedrich-Wilhelms-Universit¨at Bonn.
1. Gutachter: Prof. Herbert Karl Dreiner
2. Gutachter: Prof. Hans-Peter Nilles
Tag der Promotion: 20.12.2010
Tag der Abgabe: 02.11.2010
Erscheinungsjahr: 2011
Ich versichere, dass ich die Arbeit selbstst¨andigverfasst und keine anderen
als die angegebenen Quellen und Hilfsmittel benutzt sowie die Zitate
kenntlich gemacht habe.To My FamilyAcknowledgements
First of all, I would like to thank Prof. Herbi K. Dreiner for his support and for of-
fering me the possibility to do research on an interesting question in modern physics.
During this time I benefited from his expertise and fromuseful discussions. I also enjoyed
our discussions apart from physics.
I would also like to thank Prof. Hans-Peter Nilles for being the second referee. Fur-
thermore I appreciate that Prof. Klaus Desch and Prof. Martin Langer agreed to be the
examiners for the final viva.
I would like to thank the Bonn Cologne Graduate School of Physics and Astronomy
(BCGS), the program Pro-Motion of the University of Bonn and the Sonderforschungs-
bereich TRR33 for financial support.
IamgratefultomycollequesfromtheBetheCenterforTheoreticalPhysics. Ienjoyedthe
timeattheinstituteandIhadlotsoffruitfuldiscussions withmembers oftheDreinerand
Drees group. Here I would like to mention and thank Alessandro Barri, Markus Bern-
hardt, Nicki Bornhauser, John Conley, Anja Eich, Babak Haghighat, Marja Hanussek,
Peter Henseler, Sebastian Grab, Jong-Soo Kim, Olaf Kittel, Tobias Langenbruch, Ulrich
Langenfeld, Moritz Meinecke, Tim Stefaniak, Jamie Tattersall and Karina Williams. Of
course, I would also like to thank the secretaries Dagmar Faßbender, Eva Zimmermann
and Patrica Zu¨ndorf. I acknowledge discussions with Manuel Drees.
Special thanks go to Suchita Kulkarni and Marc Thormeier. I had lots of fruitful and
interesting discussions with them and in addition thanks to them and Jamie Tattersall
for reading parts of my thesis.
Of course, I would like to thank Eduard Reimer, Britta Tzschiesche-Simacek and a lot of
other friends who are too numerous to list here. Thank you!
FurthermoreIamthankfultothepriestsNedjoJanji´candMladenJanji´cfortheirsupport
and their advices at any time.
I am deeply grateful to my parents, my brother, all other members of my family and
especially my beloved wife Dara for their support, influence and love. This would not
have been possible without them!Abstract
We embed the DFSZ axion in supersymmetry with broken R–parity. As Supersymmetry
provides hundreds of free parameters we restrict ourselves to the lepton–number violat-
ing scenario in minimal supergravity models with baryon-triality B . In such models3
the axino is the lighest supersymmetric particle, it is not stable and its mass is kept to
be a free parameter. The axino mixes with the three neutrinos and four neutralinos to
formeight mass eigenstates. We introduce anappropiate notation, present briefly the full
Langrangian and all axino interactions. This also induces a modification of the renormal-
ization group equations which we compute. Based on this preliminary work we calculate
all two– and three–body axino decays to Standard Model particles, e.g. leptons and
mesons. Depending on the origin of theR/ operator and the mass of the axino we obtainp
different final state combinations. Taking this into account we study the corresponding
decay widths and branching ratios as a function of the superymmetric unification scale
parameters as well as the axino mass. We then in particular focus on the implications
for axino cold dark matter. We concentrate on the axino energy density in the light of
the WMAP data. These analyses are performed in detail at the benchmark point SPS1a.
Representative examples arealso chosen forbenchmark pointsSPS2 andSPS4. Fromthis
we offer a more general conclusion to other benchmark scenarios.Contents
Contents 1
1 Introduction 5
2 The puzzle of Dark Matter 9
2.1 Evidences for Dark Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Standard Model of Cosmology . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Dark Matter particle candidates . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1 Neutrinos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.2 Axions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.3 Neutralinos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.4 Axinos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.5 Other particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4 Detection methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3 The Axino model 29
3.1 mSUGRA with Baryon Triality . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Supersymmetric DFSZ Axion Model with Broken R–Parity . . . . . . . . . 31
3.2.1 The Effective Axino Gauge Interactions fromL . . . . . . . . . . . 31θ
3.2.2 Axino Superpotential Interactions . . . . . . . . . . . . . . . . . . . 36
3.2.3 Soft Supersymmetry Breaking Interactions . . . . . . . . . . . . . . 38
3.2.4 Axino Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.5 Neutralino and Chargino Mixing . . . . . . . . . . . . . . . . . . . 39
3.2.6 Neutralino and Chargino Mass Eigenstate Notation . . . . . . . . . 42
3.2.7 Peccei–Quinn Charges . . . . . . . . . . . . . . . . . . . . . . . . . 43
4 The Renormalization Group Equations 45
4.1 New RGEs due to the DFSZ axino . . . . . . . . . . . . . . . . . . . . . . 45
α4.2 Quantitative analysis of c . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5 Axino–LSP Decays 53
5.1 Axino Decay a˜→ν +γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
05.2 The Decay a˜→M ν . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55i
± ∓5.3 The Decay a˜→ℓ M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58i
+5.3.1 Decay via W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.3.2 Decay via Charged Higgs. . . . . . . . . . . . . . . . . . . . . . . . 59
1CONTENTS
− +5.4 The Decay a˜→ℓ ℓ ν . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61ji j
± 05.4.1 Decay via W ,Z Bosons. . . . . . . . . . . . . . . . . . . . . . . . 61
5.4.2 Decay via Neutral Higgs . . . . . . . . . . . . . . . . . . . . . . . . 63
5.4.3 Decay via Charged Higgs. . . . . . . . . . . . . . . . . . . . . . . . 64
¯5.5 Decay via the /R LLE operator. . . . . . . . . . . . . . . . . . . . . . . . 66p
− +5.5.1 The decay a˜→ℓ ℓ ν . . . . . . . . . . . . . . . . . . . . . . . . . 66ji j
¯5.6 Decay via the /R LQD operator . . . . . . . . . . . . . . . . . . . . . . . 73p
05.6.1 The decay a˜→M ν . . . . . . . . . . . . . . . . . . . . . . . . . . 73i
∓±5.6.2 The decay a˜→M ℓ . . . . . . . . . . . . . . . . . . . . . . . . . 78i
6 The Branching Ratios 81
¯6.1 The BR with the /R LLE operator . . . . . . . . . . . . . . . . . . . . . . 81p
¯6.2 The BRs with the LQD operator . . . . . . . . . . . . . . . . . . . . . . . 87
6.2.1 No mixing scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.2.2 Mixing scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7 Axino as Dark Matter 95
7.1 Axino energy density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
¯7.2 Axino as Dark Matter with the /R LLE operator . . . . . . . . . . . . . . 97p
¯7.3 Axino as Dark Matter with the /R LQD operator . . . . . . . . . . . . . 101p
8 Prospects for other Benchmark Points 105
8.1 The BRs at SPS2 and SPS4 . . . . . . . . . . . . . . . . . . . . . . . . . . 105
8.2 Axino as Dark Matter at SPS2 and SPS4 . . . . . . . . . . . . . . . . . . . 107
9 Summary and Conclusion 111
Appendices
A Useful Relations 113
A.1 Metric, sigma matrix conventions and relations. . . . . . . . . . . . . . . . 113
A.2 Two Body decay width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
B Axino Mass Eigenstate Interactions 115
B.1 SM Neutrino Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
B.2 Bino, Wino and Higgsino Interactions . . . . . . . . . . . . . . . . . . . . . 115
B.3 Higgs-Chargino-Neutralino interaction . . . . . . . . . . . . . . . . . . . . 117
B.4 Quark-squark-neutralino interactions . . . . . . . . . . . . . . . . . . . . . 118
B.5 Lepton-slepton-neutralino interactions . . . . . . . . . . . . . . . . . . . . 119
B.6 Yukawa interactions from the MSSM superpotential . . . . . . . . . . . . . 120
B.7 RPV Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
C Explicit RGE expressions 123
C.1 One-loop anomalous dimensions . . . . . . . . . . . . . . . . . . . . . . . . 123
C.2 RGEs for the axino trili

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents