Ends of graphs [Elektronische Ressource] / vorgelegt von Maya Jakobine Stein
124 pages
English

Ends of graphs [Elektronische Ressource] / vorgelegt von Maya Jakobine Stein

Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres
124 pages
English
Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres

Description

Ends of graphsDissertation zur Erlangung des Doktorgradesdes Fachbereichs Mathematikder Universit¨at Hamburgvorgelegt vonMaya Jakobine Steinaus HamburgHamburg 2005Als Dissertation angenommen vom Fachbereich Mathematikder Universit¨at Hamburg auf Grund der Gutachtenvon Prof.R.Diestel, PhD, und Prof.Dr.Th.Andreae.Hamburg, den 13.7.2005,Prof.Dr.A.KreuzerDekan des Fachbereichs MathematikContents1 Introduction 32 Terminology and basic facts 112.1 Basics: rays, ends and separators . . . . . . . . . . . . . . . . 112.2 The topological space|G|. . . . . . . . . . . . . . . . . . . . . 122.3 Arcs, circles and topological forests . . . . . . . . . . . . . . . 132.4 Degrees of ends . . . . . . . . . . . . . . . . . . . . . . . . . . 132.5 The cycle spaceC(G) . . . . . . . . . . . . . . . . . . . . . . . 143 The Erd˝os-Menger conjecture with ends 173.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173.2 Discussion of the ends version . . . . . . . . . . . . . . . . . . 183.3 Trees are not easier . . . . . . . . . . . . . . . . . . . . . . . . 193.4 Proof of the theorem . . . . . . . . . . . . . . . . . . . . . . . 194 Degree and parity of ends 314.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314.2 Parity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324.3 Edge-degrees in subgraphs . . . . . . . . . . . . . . . . . . . . 344.4 A cut criterion . . . . . . . . . . . . . . . . . . . . . . . . . .

Sujets

Informations

Publié par
Publié le 01 janvier 2005
Nombre de lectures 16
Langue English

Extrait

Ends of graphs
Dissertation zur Erlangung des Doktorgrades
des Fachbereichs Mathematik
der Universit¨at Hamburg
vorgelegt von
Maya Jakobine Stein
aus Hamburg
Hamburg 2005Als Dissertation angenommen vom Fachbereich Mathematik
der Universit¨at Hamburg auf Grund der Gutachten
von Prof.R.Diestel, PhD, und Prof.Dr.Th.Andreae.
Hamburg, den 13.7.2005,
Prof.Dr.A.Kreuzer
Dekan des Fachbereichs MathematikContents
1 Introduction 3
2 Terminology and basic facts 11
2.1 Basics: rays, ends and separators . . . . . . . . . . . . . . . . 11
2.2 The topological space|G|. . . . . . . . . . . . . . . . . . . . . 12
2.3 Arcs, circles and topological forests . . . . . . . . . . . . . . . 13
2.4 Degrees of ends . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 The cycle spaceC(G) . . . . . . . . . . . . . . . . . . . . . . . 14
3 The Erd˝os-Menger conjecture with ends 17
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Discussion of the ends version . . . . . . . . . . . . . . . . . . 18
3.3 Trees are not easier . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Proof of the theorem . . . . . . . . . . . . . . . . . . . . . . . 19
4 Degree and parity of ends 31
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Parity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3 Edge-degrees in subgraphs . . . . . . . . . . . . . . . . . . . . 34
4.4 A cut criterion . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.5 Proof of Theorem 4.1.4 . . . . . . . . . . . . . . . . . . . . . . 40
4.6 Properties of edge-degree and parity. . . . . . . . . . . . . . . 44
4.7 Weakly even ends . . . . . . . . . . . . . . . . . . . . . . . . . 48
5 Forcing highly connected subgraphs 53
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 Forcing highly edge-connected subgraphs . . . . . . . . . . . . 54
5.3 High edge-degree is not enough . . . . . . . . . . . . . . . . . 575.4 Forcing highly connected subgraphs . . . . . . . . . . . . . . . 59
6 Arboricity 65
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.2 Finitely many small cuts cut off all ends . . . . . . . . . . . . 66
6.3 Arboricity for locally finite graphs . . . . . . . . . . . . . . . . 69
7 Cycle-cocycle partitions 75
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.2 Cycle-cocycle partitions . . . . . . . . . . . . . . . . . . . . . 76
7.3 Related problems . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.4 Graphs with infinite degrees . . . . . . . . . . . . . . . . . . . 80
8 MacLane’s planarity criterion 87
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
8.2 Infinite circuits in generating sets . . . . . . . . . . . . . . . . 88
8.3 Simple generating sets . . . . . . . . . . . . . . . . . . . . . . 89
8.4 The backward implication . . . . . . . . . . . . . . . . . . . . 95
8.5 The forward implication . . . . . . . . . . . . . . . . . . . . . 96
8.6 Kelmans’ planarity criterion . . . . . . . . . . . . . . . . . . . 98
8.2 Graphs with infinite degrees . . . . . . . . . . . . . . . . . . . 99
9 Long circuits generate the cycle space 103
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
9.2 Locke’s conjecture with finite k . . . . . . . . . . . . . . . . . 104
9.3 Locke’s conjecture with infinite k . . . . . . . . . . . . . . . . 105
9.4 Graphs with infinite degrees . . . . . . . . . . . . . . . . . . . 10712Chapter 1
Introduction
Our topic is infinite graph theory, with our focus on the ends of an infinite graph
(which can beinformally viewed as endpoints of rays), and their role in extensions
of results known for finite graphs. Often, these extensions fail, if one does not take
into account the ends of the graph, but otherwise hold. In other cases, results
become more interesting when ends are considered as well as vertices.
An example for the latter is the Erd˝os-Menger conjecture for infinite graphs (re-
centlyprovedbyAharoniandBerger): weshallproveageneralization whichallows
for ends in the considered paths and separators. This means that in an infinite
graph, we allow paths to be infinite. Moreover, considering ends on a par with
vertices, we will allow these paths, then called arcs, to start or end in ends, and to
pass through them. Similarly, the notion of a cycle will be generalized to that of
a (possibly infinite) circle, which may pass through ends. This leads to a different
notion of forests (so-called topological forests) in infinite graphs.
Another aspect of the ends is that since in many ways they behave like vertices,
theyshouldbeattributedadegree. Weintroducesuchanotionaswellasaconcept
of parity for ends. For ends of finite degree the parity will coincide with the parity
of the degree, while ends of infinite degree will be classified into ‘even’ and ‘odd’.
Usingtheseconcepts(arcs, circles, topologicalforests,degreesandparitiesofends)
we extend several results from finite graph theory verbatim to infinite graphs.
Formally, an end of an infinite graph is an equivalence class of rays, where two
rays are equivalent if no finite set of vertices separates them. The origin of this
notion dates back to the 1940’s when it was first introduced by Hopf [27] and
Freudenthal[23],later itwasreintroducedindependentlybyHalin [24]. Aninfinite
graphGtogether withitsendscan beviewed asatopological space|G| (forlocally
finite graphs also known as the Freudenthal compactification of G); the topology
we endow|G| with is due to Freudenthal [22] and Jung [29].
From now on, we will view the graph G with its ends topologically rather than
in the usual combinatorial way, attaching equal importance to the ends of G as
to the vertices. So our analogues of paths in the topological space |G| will be4 Introduction
homeomorphic images of the unit interval, so-called arcs, which may start in, pass
through, and end in ends. All of these topological concepts as well as some basic
terminology will be introduced in detail in Chapter 2.
We adopt our topological viewpoint in Chapter 3, whose topic is a well-known
conjecture of Erd˝os (see Nash-Williams [39]), concerning a non-trivial extension
of Menger’s theorem to infinite graphs. It asks whether, given an infinite graphG
and setsA,B⊆V(G), there exists a family of disjointA–B pathsP together with
an A–B separator X consisting of a choice of one vertex from each path inP.
A topological extension to infinite graphs of this conjecture is to consider arcs
instead of paths, and to allow A, B and X to contain ends as well as vertices.
It then becomes necessary to require disjointness of the closures of A and B. If
the disjointness is attained, then the purely topological version can be reduced
(Diestel [13]) to the following alternative natural extension, which only allows
ends as starting and ending points of paths, and in the separator.
Theorem 3.1.1.[9] Let G = (V,E,Ω) be a graph and let A,B ⊆ V ∪Ω be such
that A∩B = ∅ = A∩B, the closures being taken in |G|. Then G satisfies the
Erdo˝s-Menger conjecture for A and B.
We prove this extension by reducing it to the vertex version, which was recently
established by Aharoni and Berger [1]. We shall further see that the condition
A∩B = ∅ = A∩B cannot be dropped, not even for graphs that are poor in
structure, such as trees. [9]
In the same way as paths in infinite graphs are generalized to arcs, the notion of
cycles should be generalized in a way that allows them to pass through ends. This
leads to a definition of a circle as a homeomorphic image of the unit circle in the
compactified graph |G|. For example, a double-ray whose subrays are equivalent
in some underlying graphG, forms a circle in|G| if we add this end. On the other
hand, viewed on its own, the double-ray has two ends, together with which it will
not form a circle. Not only infinite circles will be admitted, but also certain thin
infinite sums (these are such that no vertex or edge is repeated infinitely often).
TheresultingcyclespaceC(G)introducedbyDiestelandKu¨hn[17,18](sometimes
referredtoasthetopological cycle space)retainsallthebasicpropertiesofthecycle
space of a finite graph.
One of these is the characterisation of a cycle space element as the edge set of a
subgraph H that has all degrees even. This characterisation does not extend to
elements of the topological cycle space of an infinite graph, if we only consider
degrees of vertices. To see this, consider again the example of the double-ray: it
does not form a circle (together with its ends), although all vertices have even
degree.
Thismotivatesustointroduceadegreeconceptfortheendsofaninfinitegraph.[12]
In the same way as the degree of a vertex is the number of incident edges, the de-
gree of an end should be related to its rays. So there seem to be two sensible
notions of the degree of an end ω: the first is the vertex-degree, defined as the5
maximal cardinality of a set of vertex-disjoint rays in ω, the second is the edge-
degree, defined as the maximal cardinality of a set of edge-disjoint rays in ω (both
possiblyinfinite). Thatthese maxima do indeed exist is non-trivial, buta result of
Halin [25] resp. Chapter 4/ [12]. Observe that with either of these two notions the
counterexample of the double ray above ceases to be one, as i

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents