Existence and uniqueness of positive solution to singular fractional differential equations
12 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Existence and uniqueness of positive solution to singular fractional differential equations

-

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
12 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

In this paper, we discuss the existence and uniqueness of a positive solution to the following singular fractional differential equation with nonlocal boundary value conditions: { D 0 + α u ( t ) + f ( t , u ( t ) ) = 0 , 0 < t < 1 , u ( 0 ) = 0 , D 0 + β u ( 1 ) = ∑ i = 1 m − 2 η i D 0 + β u ( ξ i ) , where 1 < α ≤ 2 , 0 < β < α − 1 , 0 < ξ 1 < ⋯ < ξ m − 2 < 1 with ∑ i = 1 m − 2 η i ξ i α − β − 1 < 1 , D 0 + α is the standard Riemann-Liouville derivative, f may be singular at t = 0 , t = 1 , and u = 0 . MSC: 34B10, 34B15.

Sujets

Informations

Publié par
Publié le 01 janvier 2012
Nombre de lectures 7
Langue English

Extrait

Wangetal.BoundaryValueProblems2012,2012:81
http://www.boundaryvalueproblems.com/content/2012/1/81
RESEARCH OpenAccess
Existenceanduniquenessofapositive
solutiontosingularfractionaldifferential
equations
1* 1,2 2YongqingWang ,LishanLiu andYonghongWu
*Correspondence:
wyqing9801@163.com Abstract
1SchoolofMathematicalSciences,
Inthispaper,wediscusstheexistenceanduniquenessofapositivesolutiontotheQufuNormalUniversity,Qufu,
Shandong273165,People’s followingsingularfractionaldifferentialequationwithnonlocalboundaryvalue
RepublicofChina conditions:
Fulllistofauthorinformationis
availableattheendofthearticle
αD u(t)+f(t,u(t))=0, 0<t<1,0+ β m–2 β
u(0)=0, D u(1)= ηD u(ξ),i i0+ i=1 0+
m–2 α–β–1 αwhere1< α ≤2,0< β < α–1,0< ξ <···< ξ <1with η ξ <1,D is1 m–2 ii=1 i 0+
thestandardRiemann-Liouvillederivative,f maybesingularatt=0,t=1,andu=0.
MSC: 34B10;34B15
Keywords: fractionaldifferentialequation;positivesolution;iterativescheme;
singularboundaryvalueproblem
1 Introduction
Inthispaper,weconsiderthefollowingfractionaldifferentialequation:

⎨ αD u(t)+f(t,u(t))=, <t<,+
(.)β m– β⎩u()=, D u()= η D u(ξ ),i i+ i= +
m– α–β– αwhere  < α ≤,  < β < α–,< ξ < ··· < ξ <with η ξ <, D is the m– i +i= i
standardRiemann-Liouvillederivative,f ∈C((,)×(,+∞) →[,+∞))maybesingular
at t=, t=,and u=.Inthispaper,byapositivesolutionto(.), we mean a function
αu ∈C[,]whichsatisfiesD u ∈L(,),positiveon(,]andsatisfies(.).+
Recently, many results were obtained dealing with the existence of solutions for non-
linear fractional differential equations by using the techniques of nonlinear analysis; see
[–]andreferencestherein.Themulti-pointboundaryvalueproblems(BVPforshort)
haveprovokedagreatdealofattention,forexample[–].In[],theauthorsdiscussed
somepositivepropertiesoftheGreenfunctionforDirechlet-typeBVPofnonlinearfrac-
©2012Wangetal.;licenseeSpringer.ThisisanOpenAccessarticledistributedunderthetermsoftheCreativeCommonsAttribu-
tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium,providedtheoriginalworkisproperlycited.Wangetal.BoundaryValueProblems2012,2012:81 Page2of12
http://www.boundaryvalueproblems.com/content/2012/1/81
tionaldifferentialequation

⎨ αD u(t)+f(t,u(t))=, <t<,+
(.)
⎩u()=, u()=,
αwhere< α<,D isthestandardRiemann-Liouvillederivative,f ∈C([,]×[,+∞) →+
[,+∞)). By using the Krasnosel’skii fixed point theorem, the existence of positive solu-
tionswereobtainedundersuitableconditionsonf.
In [], the authors investigated the existence and multiplicity of positive solutions by
usingsomefixedpointtheoremsforthefractionaldifferentialequation

⎨ αD u(t)+f(t,u(t))=, <t<,+
(.)
β β⎩u()=, D u()=aD u(ξ),+ +
α–β–where  < α ≤ ,  ≤ β ≤ ,  < ξ<, ≤ a ≤with aξ <– β, ≤ α – β–, f :
[,] ×[,+∞) →[,+∞)satisfiedCarathéodorytypeconditions.
In[,],theauthorsconsideredthefractionaldifferentialequationgivenby

⎨ α (n–)D u(t)+f(t,u,u,...,u )=, <t<,n–< α ≤n,n ≥,+
(.)
⎩ (n–) (n–)u()=u()=···=u ()=, u ()=.
Inordertoobtaintheexistenceofpositivesolutionsof(.),theyconsideredthefollowing
fractionaldifferentialequation:

⎨ α–n+ n– n– D v(t)+f(t,I v(t),I v(t),...,I v(t),v(t))=, <t<,+ + + +
(.)
⎩v()=v()=.
In [], f = q(t)(g +h), and g, h have different monotone properties. By using the fixed
pointtheoremforthemixedmonotoneoperator,Zhangobtained(.)andhadaunique
n– α–n+ α–n+positive solution u(t)= I v(t)with v ∈ Q =: {x(t): t ≤ x(t) ≤ Mt }.Butthe+ M
resultsarenottruesincev(t)isapositivesolutionof(.),andv()=.Whatcausesitlies
intheunsuitableusingofpropertiesoftheGreenfunction.
n–In[],f ∈C([,]×[,+∞)×R →[,+∞)),f(t,y ,y ,...,y )isincreasingfory ≥  n– i
,i=,,...,n–.ByusingthepositivepropertiesoftheGreenfunctionobtainedin[]
and fixed point theory for the u concave operator, the authors obtained the uniqueness
ofapositivesolutionfortheBVP(.).
Motivatedbytheworksmentionedabove,inthispaperweaimtoestablishtheexistence
and uniqueness of a positive solution to the BVP (.). Our work presented in this paper
has the following features. Firstly, the BVP (.) possesses singularity, that is, f may be
singularatt=,t=,andu=.Secondly,weimposeweakerpositivityconditionsonthe
nonlocal boundary term, that is, some of the coefficients η can be negative. Thirdly, thei
uniquepositivesolutioncanbeapproximatedbyaniterativescheme.
Therestofthepaperisorganizedasfollows.InSection,wepresentsomepreliminaries
andlemmasthatwillbeusedtoproveourmainresults.Wealsodevelopsomenewpositive
propertiesoftheGreenfunction.InSection,wediscusstheexistenceanduniquenessofWangetal.BoundaryValueProblems2012,2012:81 Page3of12
http://www.boundaryvalueproblems.com/content/2012/1/81
apositivesolutionoftheBVP(.),wealsogiveanexampletodemonstratetheapplication
ofourtheoreticalresults.
2Preliminaries
For the convenience of the reader, we present here the necessary definitions from frac-
tionalcalculustheory.Thesedefinitionscanbefoundinrecentliterature.
Definition. Thefractionalintegraloforder α>ofafunctionu:(,+∞) →Risgiven
by
tα α–I u(t)= (t–s) u(s)ds+ (α) 
providedtheright-handsideisdefinedpointwiseon(,+∞).
Definition . The fractional derivative of order α >  of a continuous function u :
(,+∞) →Risgivenby
n t dα n–α–D u(t)= (t–s) u(s)ds,+ (n– α) dt 
where n=[α]+,[α] denotestheintegralpartofthenumber α,providedtheright-hand
sideispointwiselydefinedon(,+∞).


Definition. Byu ∈L(,),wemean |u(t)|dt< ∞.

αLemma.([]) Let α>.Thenthefollowingequalityholdsforu ∈L(,),D u ∈L(,),+
α α α– α– α–nI D u(t)=u(t)+c t +c t +···+c t ,  n+ +
wherec ∈R,i=,,...,n,n–< α ≤n.i
Set

⎨ α– α–β–t (–s), ≤t ≤s ≤,
G (t,s)= (.)
⎩ α– α–β– α–(α) t (–s) –(t–s) , ≤s ≤t ≤,
α–β– ξ –si
p(s)=– η , (.)i
–s
s≤ξi
α–G(t,s)=G (t,s)+q(s)t,(.)
where
m–p(s)–p() α–β–α–β–q(s)= (–s) , p()=– η ξ.(.)i i
(

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents