Existence of positive solutions for eigenvalue problem of nonlinear fractional differential equations
8 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Existence of positive solutions for eigenvalue problem of nonlinear fractional differential equations

-

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
8 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

In this article, by using the fixed point theorem, existence of positive solutions for eigenvalue problem of nonlinear fractional differential equations D 0 + α u ( t ) + λ a ( t ) f ( t , u ( t ) ) = 0 , 0 < t < 1 , u ( 0 ) = u ( 1 ) = 0 is considered, where 1 < α < 2 is a real number, D 0 + α is the standard Riemann-Liouville derivate, λ is a positive parameter and a ( t ) ∈ C ([0, 1], [0, ∞)), f ( t , u ) ∈ C ([0, 1] × [0, ∞), [0, ∞)). MSC(2010): 34B18.

Sujets

Informations

Publié par
Publié le 01 janvier 2012
Nombre de lectures 16
Langue English

Extrait

Han and GaoAdvances in Difference Equations2012,2012:66 http://www.advancesindifferenceequations.com/content/2012/1/66
R E S E A R C H
Open Access
Existence of positive solutions for eigenvalue problem of nonlinear fractional differential equations * Xiaoling Han and Hongliang Gao
* Correspondence: hanxiaoling@nwnu.edu.cn Department of Mathematics, Northwest Normal University, Lanzhou, 730070, P. R. China
Abstract In this article, by using the fixed point theorem, existence of positive solutions for eigenvalue problem of nonlinear fractional differential equations α D u(t) +λa(t)f(t,u(t0)) = 0, <t<1, 0+ u(0) =u(1) = 0
α D is considered, where 1<a<2 is a real number,0+is the standard Riemann Liouville derivate,lis a positive parameter anda(t)ÎC([0, 1], [0,)),f(t,u)ÎC([0, 1] × [0,), [0,)). MSC(2010):34B18. Keywords:fractional differential equation, positive solution, eigenvalue problem, fixed point
1 Introduction Fractional differential equations have been of great interest recently. It is caused both by the intensive development of the theory of fractional calculus itself and by the applications of such constructions in various sciences such as physics, mechanics, chemistry, engineering, etc. For details, see [16] and references therein. Recently, many results were obtained dealing with the existence and multiplicity of solutions of nonlinear fractional differential equations by the use of techniques of non linear analysis, see [722] and the reference therein. Bai and Lu [7] studied the exis tence of positive solutions of nonlinear fractional differential equation α D u(t) +f(t,u(t0)) = 0, <t<1, 0+ (1:1) u(0) =u(1) = 0,
α where 1<a2 is a real number,Dis the standard RiemannLiouville differentia 0+ tion, andf: [0, 1] × [0,)®[0,) is continuous. They derived the corresponding Green function and obtained some properties as follows. Proposition 1The Green functionG(t,s) satisfies the following conditions: (R1)G(t,s)ÎC([0,1] × [0,1]), andG(t,s)>0 fort,sÎ(0, 1);
© 2012 Han and Gao; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents