Fast and efficient methods for circuit based automotive EMC simulation [Elektronische Ressource] / vorgelegt von Martin Ludwig Zitzmann
250 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Fast and efficient methods for circuit based automotive EMC simulation [Elektronische Ressource] / vorgelegt von Martin Ludwig Zitzmann

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
250 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

Fast and Efficient Methodsfor Circuit-based AutomotiveEMC SimulationDer Technischen Fakultät derUniversität Erlangen-Nürnbergzur Erlangung des GradesD O K T O R - I N G E N I E U Rvorgelegt vonMartin Ludwig ZitzmannErlangen - 2007Als Dissertation genehmigt vonder Technischen Fakultät derUniversität Erlangen-NürnbergTag der Einreichung: 21. November 2006Tag der Promotion: 09. Februar 2007Dekan: Prof. Dr. Alfred LeipertzBerichterstatter: Prof. Dr. Robert WeigelProf. Dr. Rüdiger Vahldieck... dedicated to my parents“The ensemble is more than the sum of its parts.”Aristoteles, Greek philosopher, 384 - 322 B.C.AcknowledgementsThe presented thesis is the result of my activities within the scope of a scholarship at the Researchand Innovation Center (Forschungs- und Innovationszentrum, FIZ) of the BMW Group in Munich,Germany.I am very grateful to my supervisor Professor Dr. Robert Weigel for the opportunity to work inan interesting field of scientific research and for motivating and supporting me during this time.Special thanks also go to Professor Dr. Rüdiger Vahldieck from the field theory group of the IFHat the ETH Zurich for the second opinion.I wish to thank the head of the department EG-74 of the BMW Group, Mr. Heinz Oswald, for thechance to work in a very interesting industrial field and for offering the access to many company-internal facilities. Thanks also go to my colleagues of the EMC team and my team leader Mr.

Informations

Publié par
Publié le 01 janvier 2007
Nombre de lectures 12
Langue English
Poids de l'ouvrage 8 Mo

Extrait

Fast and Efficient Methods
for Circuit-based Automotive
EMC Simulation
Der Technischen Fakultät der
Universität Erlangen-Nürnberg
zur Erlangung des Grades
D O K T O R - I N G E N I E U R
vorgelegt von
Martin Ludwig Zitzmann
Erlangen - 2007Als Dissertation genehmigt von
der Technischen Fakultät der
Universität Erlangen-Nürnberg
Tag der Einreichung: 21. November 2006
Tag der Promotion: 09. Februar 2007
Dekan: Prof. Dr. Alfred Leipertz
Berichterstatter: Prof. Dr. Robert Weigel
Prof. Dr. Rüdiger Vahldieck... dedicated to my parents
“The ensemble is more than the sum of its parts.”
Aristoteles, Greek philosopher, 384 - 322 B.C.Acknowledgements
The presented thesis is the result of my activities within the scope of a scholarship at the Research
and Innovation Center (Forschungs- und Innovationszentrum, FIZ) of the BMW Group in Munich,
Germany.
I am very grateful to my supervisor Professor Dr. Robert Weigel for the opportunity to work in
an interesting field of scientific research and for motivating and supporting me during this time.
Special thanks also go to Professor Dr. Rüdiger Vahldieck from the field theory group of the IFH
at the ETH Zurich for the second opinion.
I wish to thank the head of the department EG-74 of the BMW Group, Mr. Heinz Oswald, for the
chance to work in a very interesting industrial field and for offering the access to many company-
internal facilities. Thanks also go to my colleagues of the EMC team and my team leader Mr.
Wolfgang Kühn, for the cooperativeness, encouragement and support during all stages of this thesis.
In this context, special considerations go to the experts in the field of automotive EMC simulation
for many fruitful discussions and for concrete supports. The convenient working environment
enormously contributed to the success of my work.
Very special thanks go to my colleagues Dr. Armin Englmaier and Dr. Gernot Steinmair, for their
valuable and constructive criticism. Their interest concerning my work, their support and many
precious ideas and discussions turned out to be indispensible for the success of this thesis.
I thank Mr. Robert Grillmair and Mr. Richard Varga for supporting my work within the scope of
their diploma theses, internships and working student activities.
Thanks go to the associates of the SimLab Software GmbH, Mr. Florian Glaser, Dr. Matthias
Tröscher, Mr. Heiko Grubrich and Mr. Hans-Peter Gerl for their support concerning various
theoretical and programming issues.
The Fraunhofer Institute for Algorithms and Scientific Computing (SCAI) provided the software
library SAMG for the implementation into the existing EMC simulation environment. I am deeply
grateful to Dr. Tanja Clees for her kind help, for her tireless support and for so many fruitful
discussions and explanations in the field of electrical engineering and mathematics.
The Max Planck Institute for Mathematics in the Sciences (MPI) provided the software library
HLIB for research purposes and many helpful suggestions to accelerate the existing EMC simula-
tion. I would like to thank, in particular Dr. Steffen Börm and Dr. Lars Grasedyk in the group of
Professor Dr. Wolfgang Hackbusch, for their interest concerning my research topic.
Finally, I would like to thank my parents Johanna and Rudi, my sister Susanne and all my friends
for so much more than words can express.Abstract
The numerical simulation of physical effects gains an enormous significance in today’s automotive
development process. Particularly the computational analysis of the electromagnetic compatibility
(EMC) can help to detect problems already before a first prototype exists. The EMC is increasingly
important due to a growing electrification of mechanical components and increased data rates in
modern car electronics. As an important extension to the verification by measurement, simulation
techniques have to be accurate and robust. A suitable modeling of 3D electromagnetic effects by
an equivalent circuit representation can be accomplished by the well-established PEEC method.
Typically, the resulting system matrices can be very large, dense and ill-conditioned. To enable
the analysis of real-life problems, an acceleration has to be applied to the modeling as well as the
solving process. Within the scope of this work, a methodology was developed to realize an overall
EMC simulation process with significantly reduced complexity in terms of CPU time and storage
demands for the underlying equation system. The latter is assumed to be the most serious bot-
tleneck in EMC simulation. Various methods for model extraction and solving were investigated.
Direct solvers usually are not efficient enough to be applicable to industrially relevant problems.
Hierarchical matrices (H-matrices) and the well-known algebraic multigrid (AMG) approach are
the most promising techniques, allowing simulations with almost optimal complexity, in princi-
ple. Moreover, they fulfill the accuracy demands and are suitable for parallel implementation. The
generality, robustness, flexibility and efficiency of the proposed methods are shown by means of
problems from the automotive environment. Numerical results demonstrate a significant speed-up
of the modeling as well as the solution process. The proposed strategies work well in time domain
and in frequency domain simulations and are regarded to be promising to enable an automotive
EMC simulation on system level. This requires the combination of models of various types to
capture the physical effects from components, the cable harnesses and the car chassis.Zusammenfassung
Die numerische Simulation physikalischer Effekte gewinnt in der heutigen Automobilentwicklung
zunehmend an Bedeutung. Insbesondere die rechentechnische Analyse der elektromagnetischen
Verträglichkeit (EMV) kann dazu dienen, Probleme bereits vor der Existenz eines ersten Proto-
typen zu detektieren. Die EMV stellt aufgrund einer zunehmenden Elektrifizierung mechanischer
Komponenten und durch stetig anwachsende Datenraten in der modernen Automobilelektronik
eine zunehmende Herausforderung dar. Als eine wichtige Ergänzung zur messtechnischen Veri-
fikation müssen Simulationstechniken genau und robust sein. Eine geeignete Modellierung elek-
tromagnetischer Effekte in 3D durch eine äquivalente Schaltkreisdarstellung kann durch die PEEC-
Methode erfolgen. In der Regel können die resultierenden Systemmatrizen sehr groß, dicht besetzt
und schlecht konditioniert sein. Um die Analyse realistischer Problemstellungen zu ermöglichen,
müssen sowohl die Modellierung als auch der Lösungsprozess beschleunigt werden. Im Rahmen
dieser Arbeit wurde eine Methodologie entwickelt, um eine EMV-Gesamtsimulation mit bedeu-
tend reduzierter Komplexität in Bezug auf CPU-Zeit und Speicherbedarf für die Berechnung von
Matrizen zu realisieren. Letzterer Aspekt wird als der kritischste Engpaß in der EMV-Simulation
angesehen. Verschiedene Methoden der Modellextraktion und des Lösens wurden untersucht. Di-
rekte Löser sind für einen Einsatz in industriell relevanten Problemstellungen in der Regel nicht
effizient genug. Hierarchische Matrizen (H-Matrizen) und das bekannte algebraische Mehrgit-
terverfahren (AMG) stellen die vielversprechensten Techniken dar, um prinzipiell Simulationen
mit annähernd optimaler Komplexität zu ermöglichen. Darüberhinaus erfüllen sie die Genauig-
keitsanforderungen und eignen sich für eine parallele Implementierung. Die Allgemeingültigkeit,
Robustheit, Flexibilität und Effizienz der vorgestellten Methoden wurden anhand von Problemen
aus dem automobilen Umfeld verdeutlicht. Numerische Ergebnisse demonstrieren eine drasti-
sche Beschleunigung sowohl der Modellierung als auch des Lösungsprozesses. Die vorgestellten
Strategien funktionieren gut in Zeitbereichs- und Frequenzbereichssimulationen und werden als
vielversprechend angesehen, um eine EMV-Simulation auf Systemebene zu ermöglichen. Dies
macht eine Verknüpfung verschiedenartiger Modelle notwendig, um die physikalischen Effekte
von Steuergeräten, Kabelbäumen und der Karosserie zu berücksichtigen.Contents
1 Introduction 1
1.1 Automotive EMC Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Modern Solution Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Contents and Contributions of this Thesis . . . . . . . . . . . . . . . . . . . . . 5
2 Simulation Basics of Electromagnetic Effects 9
2.1 Maxwell’s Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 The Electromagnetic Scattering Problem . . . . . . . . . . . . . . . . . . . . . . 11
2.3 The Retarded Electrodynamic Potentials . . . . . . . . . . . . . . . . . . . . . . 12
2.4 The Electric Field Integral Equation . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Numerical Field Computation Basics . . . . . . . . . . . . . . . . . . . . . . . . 14
3 Equivalent Circuit Modeling 17
3.1 The Petrov-Galerkin Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Partial Elements for a Manhattan Discretization . . . . . . . . . . . . . . . . . . 19
3.2.1 Discretization of the EFIE . . . . . . . . . . . . . . . . . . . . . . . .

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents