Functional dextran-based hydrogels [Elektronische Ressource] : synthesis and biomedical applications / vorgelegt von Annette Brunsen
238 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Functional dextran-based hydrogels [Elektronische Ressource] : synthesis and biomedical applications / vorgelegt von Annette Brunsen

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
238 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

Functional Dextran-Based Hydrogels Synthesis and Biomedical Applications Dissertation zur Erlangung des Grades "Doktor der Naturwissenschaften" im Promotionsfach Chemie am Fachbereich Chemie, Pharmazie und Geowissenschaften der Johannes Gutenberg-Universität in Mainz vorgelegt von Annette Brunsen geboren in Haselünne Mainz, 2010 Die vorliegende Arbeit wurde in der Zeit von Januar 2007 bis Januar 2010 in der Materialforschungsgruppe am Max-Planck-Institut für Polymerforschung in Mainz angefertigt. Dekan: 1. Berichterstatter: 2. Berichterstatter: Übrige Mitglieder der Prüfungskommission: Tag der mündlichen Prüfung: 15. März 2010 „Du bist zeitlebens für das verantwortlich, was du dir vertraut gemacht hast.“ Antoine de Saint-Exupéry (Werk: Der kleine Prinz) ABSTRACT Dextran-based polymers are versatile hydrophilic materials which can provide functionalized surfaces in various areas including biological and medical applications.

Sujets

Informations

Publié par
Publié le 01 janvier 2010
Nombre de lectures 22
Langue English
Poids de l'ouvrage 21 Mo

Extrait


Functional Dextran-Based Hydrogels
Synthesis and Biomedical Applications








Dissertation


zur Erlangung des Grades
"Doktor der Naturwissenschaften"
im Promotionsfach Chemie



am Fachbereich Chemie, Pharmazie und Geowissenschaften
der Johannes Gutenberg-Universität in Mainz




vorgelegt von


Annette Brunsen
geboren in Haselünne




Mainz, 2010










































Die vorliegende Arbeit wurde in der Zeit von Januar 2007 bis Januar 2010 in der
Materialforschungsgruppe am Max-Planck-Institut für Polymerforschung in Mainz
angefertigt.




























Dekan:

1. Berichterstatter:
2. Berichterstatter:

Übrige Mitglieder der Prüfungskommission:



Tag der mündlichen Prüfung: 15. März 2010


























































































„Du bist zeitlebens für das verantwortlich,
was du dir vertraut gemacht hast.“

Antoine de Saint-Exupéry
(Werk: Der kleine Prinz)









































ABSTRACT

Dextran-based polymers are versatile hydrophilic materials which can provide functionalized
surfaces in various areas including biological and medical applications. Functional,
responsive, dextran-based hydrogels are crosslinked, dextran-based polymers allowing the
modulation of response towards external stimuli. The controlled modulation of hydrogel
properties towards specific applications and the detailed characterization of the optical,
mechanical, and chemical properties are of strong interest in science and for further
applications. Especially, the structural characteristics of swollen hydrogel matrices and the
characterization of their variations upon environmental changes are challenging. Depending
on their properties hydrogels are applied as actuators, biosensors, in drug delivery, tissue
engineering, or for medical coatings. However, the field of possible applications still shows
potential to be expanded.
Surface attached hydrogel films with a thickness of several micrometers can serve as
waveguiding matrix for leaky optical waveguide modes. On the basis of highly swelling and
waveguiding dextran-based hydrogel films an optical biosensor concept was developed. The
synthesis of a dextran-based hydrogel matrix, its functionalization to modulate its response
towards external stimuli, and the characterization of the swollen hydrogel films were main
interests within this biosensor project. A second focus was the optimization of the hydrogel
characteristics for cell growth with the aim of creating scaffolds for bone regeneration.
Matrix modification towards successful cell growth experiments with endothelial cells and
osteoblasts was achieved.
A photo-crosslinkable, carboxymethylated dextran-based hydrogel (PCMD) was synthesized
and characterized in terms of swelling behaviour and structural properties. Further
functionalization was carried out before and after crosslinking. This functionalization aimed
towards external manipulation of the swelling degree and the charge of the hydrogel matrix
important for biosensor experiments as well as for cell adhesion. The modulation of
functionalized PCMD hydrogel responses to pH, ion concentration, electrochemical
switching, or a magnetic force was investigated.
The PCMD hydrogel films were optically characterized by combining surface plasmon
resonance (SPR) and optical waveguide mode spectroscopy (OWS). This technique allows a
detailed analysis of the refractive index profile perpendicular to the substrate surface by
applying the Wentzel-Kramers-Brillouin (WKB) approximation.
In order to perform biosensor experiments, analyte capturing units such as proteins or
antibodies were covalently coupled to the crosslinked hydrogel backbone by applying active
ester chemistry. Consequently, target analytes are located inside the waveguiding matrix. By
using labeled analytes, fluorescence enhancement was achieved by fluorescence excitation
with the electromagnetic field in the center of the optical waveguide modes. The fluorescence
excited by the evanescent electromagnetic field of the surface plasmon was 2-3 orders of
magnitude lower. Furthermore, the signal to noise ratio was improved by the fluorescence
excitation with leaky optical waveguide modes.
The applicability of the PCMD hydrogel sensor matrix for clinically relevant samples was
proofed in a cooperation project with Yi Wang and Jakub Dostálek for the detection of PSA
in serum with long range surface plasmon spectroscopy (LRSP) and fluorescence excitation
by LRSP (LR-SPFS).










































TABLE OF CONTENTS

1 Introduction-------------------------------------------------------------------- 1

1.1 Hydrogels – Highly Swelling Polymer Networks------------------------------- 1
1.1.1 Functional Hydrogels and Applications ---------------------------------------------------- 2
1.1.2 Crosslinking and Swelling Affecting Diffusion and Surface Properties. ------------ 3
1.1.3 Stimuli Responsive and Hybrid Hydrogels ------------------------------------------------ 4
1.1.4 Dextran and Water-Based Chemistry ------------------------------------------------------- 6
1.2 Optical Biosensors -------------------------------------------------------------------- 6
1.2.1 Analyte Recognition---------------------------------------------------------------------------- 7
1.2.2 Surface Attachment of the Analyte Recognition Unit ----------------------------------- 9
1.2.3 Read-out Mechanisms-------------------------------------------------------------------------11
1.2.4 Biosensors – Stat of the Art------------------------------------------------------------------12
1.3 Aim and Outline----------------------------------------------------------------------14
1.4 Bibliography---------------------------------------------------------------------------16


2 Methods----------------------------------------------------------------------- 19

2.1 Surface Plasmon Resonance (SPR) and Optical Waveguide
Mode Spectroscopy (OWS) --------------------------------------------------------19
2.1.1 Surface Plasmon Resonance Spectroscopy (SPR)---------------------------------------19
2.1.2 Optical Waveguide Mode Spectroscopy (OWS)-----------------------------------------24
2.1.3 Long Range Surface Plasmon Spectroscopy (LRSP) -----------------------------------26
2.2 Surface Plasmon Resonance and Optical Waveguide Mode Enhanced
Fluorescence Spectroscopy (SPFS/OWFS) -------------------------------------27
2.2.1 Surface Plasmon Resonance Enhanced Fluorescence Spectroscopy (SPFS)-------30
2.2.2 Optical Waveguide Mode Enhanced Fluorescence Spectroscopy (OWFS) --------31
2.3 The Wentzel-Kramers-Brillouin Approximation - Data Analysis---------32
2.4 Cyclic Voltammetry -----------------------------------------------------------------34
2.5 Atomic Force Microscopy ----------------------------------------------------------37 2.6 Cryo-Scanning Electron Microscopy --------------------------------------------38
2.7 UV-VIS/NIR-Spectroscopy --------------------------------------------------------39
2.8 Contact Angle measurements -----------------------------------------------------40
2.9 Bibliography---------------------------------------------------------------------------41


3 Materials --------------------------------------------------------------------- 43

3.1 Synthesis of a Photo-Crosslinkable, pH-Responsive Dextran Hydrogel -43
3.1.1 Introduction -------------------------------------------------------------------------------------44
3.1.2 Two Strategies for the Synthesis of a Photo-Crossl

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents