Higher order evolution equations and dynamic boundary value problems [Elektronische Ressource] / vorgelegt von Ti-Jun Xiao
136 pages
Deutsch

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Higher order evolution equations and dynamic boundary value problems [Elektronische Ressource] / vorgelegt von Ti-Jun Xiao

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
136 pages
Deutsch
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

Higher Order Evolution Equationsand Dynamic Boundary ValueProblemsDissertationder Fakult at furÄ Mathematik und Physikder Eberhard–Karls–Universit at TubingenÄzur Erlangung des Grades einesDoktors der NaturwissenschaftenVorgelegt vonTi-Jun Xiaoaus Sichuan, China2002Tag der mundlicÄ hen Qualifikation: 23. December 2002Dekan: Professor Dr. H. MutherÄ1. Berichterstatter: Dr. R. Nagel2. Berich Professor Dr. J. A. GoldsteinZusammenfassung in deutscherSpracheIn dieser Arbeit untersuchen wir Cauchyprobleme h oherer Ordnung der Form(ACP )n 8 n¡1P< (n) (i)u (t)+ Au (t)=0; t‚0;ii=0: (k)u (0)=u ; 0•k•n¡1;kwobei A ; A ;¢¢¢, A lineare Operatoren auf einem Banachraum X sind . Dazu0 1 n¡1fuhrenÄ wir in Kapitel 1 Operatoren, sogenannte Existenzfamilien, ein, die einenweiteren Banachraum Y in X abbilden. Damit erhalten wir eine grosse Flexi-bilit at und k onnen Existenz und stetige Abh angigkeit der L osungen von ( ACP )nund seiner inhomogenen Version beweisen. Analog werden Eindeutigkeitsfamiliendefiniert zur Charakterisierung der Eindeutigkeit der L osungen. Die Verbindungdieser beiden Konzepte gestattet die Verallgemeinerung aller bisher bekannten Re-sultate zur L osung von ( ACP ).nIn Kapitel 2 werden dann multiplikative und additive St orungsresultate vomDesch-Schappacher-Typ furÄ (ACP ) bewiesen und angewandt.nIm zweiten Teil der Arbeit untersuchen wir dynamische Randbedingungen furÄCauchyprobleme erster und zweiter Ordnung.

Sujets

Informations

Publié par
Publié le 01 janvier 2003
Nombre de lectures 16
Langue Deutsch

Extrait

Higher Order Evolution Equations
and Dynamic Boundary Value
Problems
Dissertation
der Fakult at fur? Mathematik und Physik
der Eberhard–Karls–Universit at Tubingen?
zur Erlangung des Grades eines
Doktors der Naturwissenschaften
Vorgelegt von
Ti-Jun Xiao
aus Sichuan, China
2002Tag der mundlic? hen Qualifikation: 23. December 2002
Dekan: Professor Dr. H. Muther?
1. Berichterstatter: Dr. R. Nagel
2. Berich Professor Dr. J. A. GoldsteinZusammenfassung in deutscher
Sprache
In dieser Arbeit untersuchen wir Cauchyprobleme h oherer Ordnung der Form
(ACP )n 8 n¡1P< (n) (i)u (t)+ Au (t)=0; t‚0;i
i=0: (k)u (0)=u ; 0•k•n¡1;k
wobei A ; A ;¢¢¢, A lineare Operatoren auf einem Banachraum X sind . Dazu0 1 n¡1
fuhren? wir in Kapitel 1 Operatoren, sogenannte Existenzfamilien, ein, die einen
weiteren Banachraum Y in X abbilden. Damit erhalten wir eine grosse Flexi-
bilit at und k onnen Existenz und stetige Abh angigkeit der L osungen von ( ACP )n
und seiner inhomogenen Version beweisen. Analog werden Eindeutigkeitsfamilien
definiert zur Charakterisierung der Eindeutigkeit der L osungen. Die Verbindung
dieser beiden Konzepte gestattet die Verallgemeinerung aller bisher bekannten Re-
sultate zur L osung von ( ACP ).n
In Kapitel 2 werden dann multiplikative und additive St orungsresultate vom
Desch-Schappacher-Typ fur? (ACP ) bewiesen und angewandt.n
Im zweiten Teil der Arbeit untersuchen wir dynamische Randbedingungen fur?
Cauchyprobleme erster und zweiter Ordnung. Dynamische Randb kom-
men in verschiedenen konkreten Problemen vor, zum Beispiel in Modellen von dy-
namischen Vibrationen von linearen viscoelastischen St aben mit Spitze-Masse (tip
masses) auf ihren bewegenden Enden. Die mathematische Untersuchung von Evo-
lutionsgleichungen mit dynamische Randbedingungen geht auf 1961 zuruc? k, als J.
L. Lions solche Gleichungen behandelte und schwache L osungen mit Hilfe von Vari-
ationsmethoden gab.
Kapitel 3 presentiert eine L osung fur? ein Problem, das A. Favini, G. R. Gold-
stein, J. A. Goldstein and S. Romanelli [34] gestellt haben bezuglic? h des gemischten
Problems fur? Wellengleichungen mit verallgemeinerten Wentzell Randbedingungen.
Im vierten Kapitel wird der zugeh orige nichtautonome Fall betrachtet. Hier er-
halten wir nicht nur Existenz- und Eindeutigkeitsresultate sondern auch pr azise
Aussagen zur Regularit at der L osungen.
Schliesslich enthalten Kapitel 5 und 6 eine einheitliche Behandlung gemischter
iProbleme (Anfangs-Randwert Probleme) mit dynamischen Randbedingungen fur?
parabolische und hyperbolische oder allgemeine Gleichungen zweiter Ordnung. Wir
besch aftigenunsdirektmitProblemenzweiterOrdnung,ohnesieaufersteOrdnung
zu reduzieren. Es stellt sich heraus, daß diese direkte Methoden starke L osungen
von erwunsc? hter Regularit at liefern und sogar allgemeine Theoreme erm oglichen.
Eine Reihe von ganz neuen Resultaten werden bewiesen. Die Ergebnisse werden
dann auf konkrete partielle Differentialgleichungen angewandt.
iiContents
Introduction 1
1 ExistenceanduniquenessfamiliesforhigherorderabstractCauchy
problems 5
1.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Existence and uniqueness families for (ACP ) and wellposedness ofn
(ACP ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8n
1.4 Inhomogeneous Cauchy problems . . . . . . . . . . . . . . . . . . . . 19
1.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2 Perturbations of existence families for higher order abstract
Cauchy problems 27
2.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3 Perturbations of existence families for (ACP ) . . . . . . . . . . . . . 29n
2.4 P of regularized semigroups and regularized cosine oper-
ator functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3 Wave equations with generalized Wentzell boundary conditions 43
3.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3 Wellposedness of (ACP ) and (ACP ). . . . . . . . . . . . . . . . . . 462 1
4 The mixed problem for time dependent heat equations with gen-
eralized Wentzell boundary conditions 56
4.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
i4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3 Preliminary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.4 Existenceofevolutionfamilyfor(NACP)andregularityfor(NACP)
and (INACP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5 Second order abstract parabolic equations with dynamic boundary
conditions 69
5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.3 Parabolicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.4 The main theorem for problem (5.2.8). . . . . . . . . . . . . . . . . . 83
5.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6 Complete second order abstract differential equations with dy-
namic boundary conditions 97
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.3 Strong wellposedness and quasi-wellposedness . . . . . . . . . . . . . 102
6.4 Solutions to inhomogeneous problems . . . . . . . . . . . . . . . . . 112
6.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Bibliography 122
iiIntroduction
Higher order evolution equations
A very interesting and important area of modern mathematical study are evo-
lution equations. The reason for this stems from the fact that many problems in
partial differential equations arising from mechanics, physics, engineering, control
theory, etc., canbetranslatedintotheformofinitialvalueorinitialboundaryvalue
problems for evolution equations in appropriate infinite dimensional spaces.
A considerable effort has been devoted since the well-known Hille-Yosida theorem
cameoutin1948fortheinvestigationoftheCauchyproblemforfirstorderevolution
equations (
0u(t)=Au(t); t‚0;
(ACP )1
u(0)=u ;0
(A being a linear operator in an infinite dimensional space) and related equations.
The general theory and basic results for first order abstract Cauchy problems and
operator semigroups are available in the monographs of Arendt, Batty, Hieber and
Neubrander [5], Davies [15], deLaubenfels [19], Engel and Nagel [26], Fattorini [30,
31], Goldstein [38], Hille [41], Hille and Phillips [42], Lions and Magenes [60], Pazy
[67], Reed and Simon [71], Xiao and Liang [84] and others.
On the other hand, since the pioneer work of Lions [57] in 1957, the Cauchy
problem for higher order (n‚2) evolution equations
8
n¡1P< (n) (i)u (t)+ Au (t)=0; t‚0;i
(ACP )i=0 n: (k)u (0)=u ; 0•k•n¡1;k
where A ; A ; ¢¢¢, A are linear operators in an infinite dimensional space, has0 1 n¡1
been extensively explored (see, e.g., Engel and Nagel [26], Fattorini [31], Goldstein
[38],Krein[51],XiaoandLiang[84]). However,thistheoryisfarfrombeingperfect,
as compared with that of first order abstract Cauchy problems. Many interesting
problems connected closely to (ACP ) still remain open.n
In Chapter 1, we introduce a new operator family of bounded linear operators
from another Banach space Y to X, called an existence family for (ACP ), to studyn
the existence and continuous dependence on initial data of the solutions of (ACP )n
1and its inhomogeneous version (IACP ), and obtain some basic results in a quiten
general setting. A sufficient and necessary condition ensuring (ACP ) to possess ann
exponentiallyboundedexistencefamily,intermsofLaplacetransforms,ispresented.
As a partner of the existence family, we define, for (ACP ), a uniqueness family ofn
bounded linear operators on X to guarantee the uniqueness of the solutions. These
twooperatorfamiliesaregeneralizationsofstronglycontinuoussemigroupsandsine
operator functions, C-regularized semigroups and sine operator functions, existence
and uniqueness families for (ACP ), and C-propagation families for (ACP ). They1 n
have a special function in treating those illposed (ACP ) and (IACP ) whose coef-n n
ficient operators lack commutativity.
Chapter 2 is intended to establish Desch-Schappacher type multiplicative and
additive perturbation theorems for existence families for (ACP ) (with A =¢¢¢ =n 1
A = 0). As a consequence, perturbation results for regularized semigroups andn¡1
regularized cosine operator functions are obtained generalizing the previous ones.
An example is also given to illustrate possible applications.
Dynamic boundary value problems boundary conditions occur in diverse practical problems, for instance,
in those modelling the dynamic vibrations of linear viscoelastic rods and beams
with tip masses attached at their free ends (see, e.g., [6]). The study of evolution
equ

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents