In situ consumable production for Mars missions [Elektronische Ressource] / Kristian Pauly
214 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

In situ consumable production for Mars missions [Elektronische Ressource] / Kristian Pauly

-

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
214 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

Technische Universit t M nchen Lehrstuhl f r Raumfahrttechnik In Situ Consumable Production for Mars Missions Kristian Pauly Vollst ndiger Abdruck der von der Fakult ?t f r Maschinenwesen der Technischen Universit t M nchen zur Erlangung des akademischen Grades eines Doktor-Ingenieurs genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr.-Ing. Boris Laschka Pr fer der Dissertation: 1. Univ.-Prof. Dr.-Ing. Eduard Igenbergs, i.R. 2. Univ.-Prof. Dr.-Ing., Dr.-Ing. habil. Johann Stichlmair Die Dissertation wurde am 17.01.2002 bei der Technischen Universit t M nchen eingereicht und durch die Fakult t f r Maschinenwesen am 15.07.2002 angenommen. Technische Universität München NASA - Johnson Space Center Fachgebiet Raumfahrttechnik Propulsion Systems Branch ?Roald Amundsen and a crew of six in the 70 foot, 47 ton Gjła were the firsts to find the Northwest Passage to Asia through North America. There had been some hundred previous failed attempts, all involving at least an order of magnitude greater effort than the success. The British Navy, at the height of its power, tried thirty times without success. The Franklin expedition, with two specially adapted steam frigates [ ] had one of the deepest penetrations into the passage. All 130 men died of starvation on or near King William Island.

Sujets

Informations

Publié par
Publié le 01 janvier 2002
Nombre de lectures 75
Langue English
Poids de l'ouvrage 32 Mo

Extrait



Technische Universit t M nchen

Lehrstuhl f r Raumfahrttechnik



In Situ Consumable Production for Mars Missions



Kristian Pauly



Vollst ndiger Abdruck der von der Fakult ?t f r Maschinenwesen der Technischen
Universit t M nchen zur Erlangung des akademischen Grades eines
Doktor-Ingenieurs
genehmigten Dissertation.



Vorsitzender: Univ.-Prof. Dr.-Ing. Boris Laschka
Pr fer der Dissertation:
1. Univ.-Prof. Dr.-Ing. Eduard Igenbergs, i.R.
2. Univ.-Prof. Dr.-Ing., Dr.-Ing. habil. Johann Stichlmair



Die Dissertation wurde am 17.01.2002 bei der Technischen Universit t M nchen
eingereicht und durch die Fakult t f r Maschinenwesen am 15.07.2002 angenommen.







Technische Universität München NASA - Johnson Space Center
Fachgebiet Raumfahrttechnik Propulsion Systems Branch













?Roald Amundsen and a crew of six in the 70 foot, 47 ton Gjła were the firsts to find the
Northwest Passage to Asia through North America. There had been some hundred
previous failed attempts, all involving at least an order of magnitude greater effort than
the success. The British Navy, at the height of its power, tried thirty times without
success. The Franklin expedition, with two specially adapted steam frigates [ ] had one
of the deepest penetrations into the passage. All 130 men died of starvation on or near
King William Island. Amundsen’s crew spent more than two years at the same place,
hunting caribou for food and doing valuable scientific research instead of starving.

What was the difference?

Carrying all provisions versus living off the land.



[Olson, 1997]


ACKNOWLEDGEMENTS


I would like to thank for their continued support:


My Family
Dr.-Ing. Peter Eckart
Hugh Ronalds
The German National Merit Foundation (Studienstiftung des dt. Volkes)



as well as

Prof. Eduard Igenbergs Dr. Howard Wagner John Connolly
Prof. Johann Stichlmair Scott Baird Constantin Corsten
Todd Peters Gerald Sanders Nadeeka Cyril
Martin McClean Joe Trevathan Kennda Lynch
Tom Simon Donn Sickorez Andrea Ross










Dedicated to Thidarat

อวกาศ รก ธดารตน


ััิKristian Pauly ISCP for Mars Missions
TABLE OF CONTENTS

1 Introduction ..................................................................... 15
2 Background ...................................................................... 19
2.1 Definitions...................................................................................................19
2.1.1 In Situ Resource Utilization (ISRU) ........................................................19
2.1.2 Consumable Production (ISCP)...................................................19
2.1.3 In Situ Propellant Production (ISPP) ......................................................20
2.1.4 Mars In Situ Consumable Production Elements .......................................20
2.2 NASA’s Long-Term Planning .........................................................................21
2.2.1 Mars Surveyor Program ........................................................................21
2.2.2 The NASA Design Reference Mission23
2.2.3 Where does ISRU fit in?32
2.2.3.1 Mass Reduction ................................................................................35
2.2.3.2 Cost Reduction .................................................................................35
2.2.3.3 Risk Reduction..................................................................................35
2.2.3.4 Expansion of Human Exploration and Presence...................................35
2.2.3.5 Enabling of Space Commercialization .................................................35
2.3 Propulsion and Fluid Systems Branch ............................................................37
2.3.1 Mars ISRU Systems Test Facility37
2.3.2 Mars ISPP Precursor Experiment (MIP) ..................................................39
2.4 The Sabatier Reaction40
2.4.1 The Sabatier Reaction in Chemistry .......................................................40
2.4.2 batier Process in Life Support Systems ........................................43
2.5 Requirements and Constraints for Space Applications ....................................44
2.5.1 Launch Environment.............................................................................44
2.5.2 Space Environment...............................................................................45
2.5.3 Mars Environment ................................................................................47
2.6 Scope of Ph.D. Work....................................................................................49
3 Modeling........................................................................... 53
3.1 Outline........................................................................................................53
3.2 The Reverse Water Gas Shift Reaction ..........................................................54
3.3 Methanol Synthesis......................................................................................63
3.4 Excel Model.................................................................................................69
3.5 MATLAB Model of the Sabatier Reactor .........................................................72
3.5.1 Pressure Loss within the Reactor...........................................................72
3.5.2 Enthalpy, Heat of Reaction, Gibbs Energy ..............................................74
3.5.3 Actual Heat of Formation ......................................................................81
3.5.4 Lagrange s Undetermined Multipliers Method .........................................82
3.5.5 Relaxation Method................................................................................86
3.5.6 Modified Relaxation Method ..................................................................89
_____________________________________________________________________
v Kristian Pauly ISCP for Mars Missions
3.5.7 Modified Relaxation Method in Cylinder Coordinates ...............................90
3.5.8 Relaxation Method with Internal Heat Sources .......................................91
3.5.9 Influence of Catalyst on Mass and Heat Transport..................................92
3.5.10 Reaction Rate.......................................................................................97
3.6 MATLAB/SIMULINK Model of the Overall System .........................................102
3.6.1 Modeling of Fluid Properties................................................................102
3.6.2 Atmosphere Acquisition System...........................................................103
3.6.3 Pipes .................................................................................................105
3.6.3.1 Heat Transfer at Inner Wall.............................................................105
3.6.3.2 Heat Flow due to Convection109
3.6.3.3 Heat Transfer due to External Airflow...............................................110
3.6.4 Condenser .........................................................................................114
3.6.5 Electrolyzer........................................................................................118
3.6.6 Overall Model.....................................................................................119
4 Testing............................................................................ 123
4.1 Outline......................................................................................................123
4.2 Test Setup ................................................................................................124
4.2.1 Atmosphere Simulation and Acquisition................................................127
4.2.2 Chemical Processing ...........................................................................128
4.2.3 Liquefaction and Storage ....................................................................130
4.3 Safety and Environmental Impact ...............................................................132
4.4 Integrated Tests under Ambient Conditions.................................................133
4.4.1 Flow Schematic ..................................................................................133
4.4.2 Measurements and Controls................................................................133
4.4.3 Test Plan for Tests under Ambient Conditions ......................................134
4.5 Integrated Tests in Simulated Martian Environment .....................................137
4.5.1 Flow Schematic137
4.5.2 Measurements and Controls137
4.5.3 Simulation of Martian Environment ......................................................138
4.5.4 Test Plan for Tests under Simulated Martian Environment Conditions ....139
4.6 Results of Integrated Tests under Ambient Conditi

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents