Investigation of supercapacitors with carbon electrodes obtained from argon-acetylene arc plasma ; Superkondensatorių su anglies elektrodais, suformuotais iš elektrolankinio išlydžio argono-acetileno plamos, tyrimas
26 pages

Investigation of supercapacitors with carbon electrodes obtained from argon-acetylene arc plasma ; Superkondensatorių su anglies elektrodais, suformuotais iš elektrolankinio išlydžio argono-acetileno plamos, tyrimas

-

Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres
26 pages
Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres

Description

Vytautas Magnus University Žydr ūnas Kavaliauskas INVESTIGATION OF SUPERCAPACITORS WITH CARBON ELECTRODES OBTAINED FROM ARGON-ACETYLENE ARC PLASMA Summary of Doctoral Dissertation Physics (02P) Kaunas, 2010 Doctoral dissertation was prepared in 2006-2010 at Vytautas Magnus University. Part of this research was performed in collaboration with Lithuanian Energy Institute. Scientific supervisor: Prof. habil. dr. Liudvikas Pranevi čius (Vytautas Magnus University, Physical sciences, Physics – 02P). Scientific advisor: Dr. Darius Mil čius (Lithuanian Energy Institute, Physical sciences, Physics – 02P). Doctoral Dissertation will be defended in the Council of Physics of Vytautas Magnus University. Chairman: Prof. habil. dr. Julius Dudonis (Kaunas University of Technology, Physical sciences, Physics – 02P). Members: Doc. dr. Valdas Girdauskas (Vytautas Magnus University, Physical sciences, Physics – 02P). Doc. dr. Aleksandras Iljinas (Kaunas University of Technology, Physical sciences, Physics – 02P). Dr. Vitas Valin čius (Lithuanian Energy Institute, Technological science, Power and thermal engineering – 06T). Dr. Viktorija Grigaitien ė (Lithuanian Energy Institute, Technological science, Power and therma Opponents: Doc. dr. Arvydas Kanapickas (Vytautas Magnus University, Physical sciences, Physics – 02P). Prof. habil. dr.

Sujets

Informations

Publié par
Publié le 01 janvier 2010
Nombre de lectures 62

Extrait

Vytautas Magnus University
ydrnas Kavaliauskas
INVESTIGATION OF SUPERCAPACITORS WITH CARBON ELECTRODES OBTAINED FROM ARGON-ACETYLENE ARC PLASMA
Summary of Doctoral Dissertation Physics (02P)
Kaunas, 2010
Doctoral dissertation was prepared in 2006-2010 at Vytautas Magnus University. Part of this research was performed in collaboration with Lithuanian Energy Institute. Scientific supervisor: Prof. habil. dr. Liudvikas Pranevičius (Vytautas Magnus University, Physical sciences, Physics  02P). Scientific advisor: Dr. Darius Milčius (Lithuanian Energy Institute, Physical sciences, Physics  02P). Doctoral Dissertation will be defended in the Council of Physics of Vytautas Magnus University. Chairman:Prof. habil. dr. Julius Dudonis (Kaunas University of Technology, Physical sciences, Physics 02P). Members: Doc. dr. Valdas Girdauskas (Vytautas Magnus University, Physical sciences, Physics  02P). Doc. dr. Aleksandras Iljinas (Kaunas University of Technology, Physical sciences, Physics  02P). Dr. Vitas Valinčius (Lithuanian Energy Institute, Technological science, Power and thermal engineering  06T). Dr. Viktorija Grigaitien Energy Institute, Technological science, (Lithuanian Power and thermal engineering  06T). Opponents: Doc. dr. Arvydas Kanapickas (Vytautas Magnus University, Physical sciences, Physics  02P). Prof. habil. dr. Giedrius Laukaitis (Kaunas University of Technology, Physical sciences, Physics  02P). The official defense of Dissertation will be held at 12 p.m on 9 December 2010
in 220 auditorium at Faculty of Natural Sciences of Vytautas Magnus University, Vileikos 8, LT-44404 Kaunas, Lithuania. Summary of the Doctoral Dissertation has been distributed on 5 November 2010. The Dissertation is available at the libraries of Vytautas Magnus University, Institute of Physics, Martynas Mavydas National Library of Lithuania.
2
Vytauto Didiojo Universitetas
ydrnas Kavaliauskas SUPERKONDENSATORISU ANGLIES ELEKTRODAIS, SUFORMUOTAIS I ELEKTROLANKINIO ILYDIO ARGONO-ACETILENO PLAZMOS, TYRIMASDaktaro disertacijos santrauka
Fiziniai mokslai, fizika (02P)
Kaunas, 2010
3
Disertacija rengta 2006-2010 metais Vytauto Didiojo Universitete. Dalis eksperimentatlikta Lietuvos energetikos institute. Mokslinis vadovas: Prof. habil. dr. Liudvikas Pranevičius (Vytauto Didiojo universitetas, fizika  02P). Konsultantas: Dr. Darius Milčius (Lietuvos energetikos institutas, fiziniai mokslai, fizika  02P). Disertacija ginama Vytauto Didiojo Universiteto Fizikos krypties taryboje. Pirmininkas:Prof. habil. dr. Julius Dudonis (Kauno tecnologijos universitetas, fiziniai mokslai, fizika  02P). Nariai: Doc. dr. Valdas Girdauskas (Vytauto Didiojo Universitetas, fiziniai mokslai, fizika  02P). Doc. dr. Aleksandras Iljinas (Kauno tecnologijos universitetas, fiziniai mokslai, fizika 02P). Dr. Vitas Valinčius (Lietuvos energetikos institutas, technologijos mokslai, energetika ir termoininerija  06T). Dr. Viktorija Grigaitien(Lietuvos energetikos institutas, technologijos mokslai, energetika ir termoininerija  06T). Oponentai: Doc. dr. Arvydas Kanapickas (Vytauto Didiojo Universitetas, fiziniai mokslai, fizika  02P). Prof. habil. dr. Giedrius Laukaitis (Kauno tecnologijos universitetas, fiziniai mokslai, fizika  02P). Disertacija bus ginama vieame Fizikos mokslo krypties tarybos posdyje 2010 m. gruodio 9 d. 12 val. Vytauto Didiojo Universiteto Gamtos moksl fakulteto 220 auditorijoje. Adresas: Vileikos gt. 8 LT44404 Kaunas, Lietuva. Disertacijos santrauka isiuntinta 2010 m. lapkričio mn. 5 d. Disertacijągalima perirti Vytauto Didiojo universiteto bibliotekoje, Fizikos instituto bibliotekoje bei Lietuvos nacionalinje Martyno Mavydo bibliotekoje.
4
Acknowledgment
I feel thankful to many people for their assistance, contribution and support. I am
deeply grateful to all of them.
First of all, I would like to thank to my scientific supervisor prof. habil. dr.
Liudvikas Pranevičius for leadership and knowledge about nanomaterials physics. I am
also grateful for his patience and encouragement.
Also I want thank to the chief of Centre for Hydrogen Energy Technologies dr.
Darius Milčius for ideas and suggestions for scientific investigations and for the
availability of modern equipment.
I am grateful to the chief of Plasma processing laboratory dr. Vitas Valinčius for
valuable comments and granted access to experimental laboratory equipment.
I am grateful, to professor of Vytautas Magnus University Liudas Pranevičius and
to associate professor of Kaunas University of Technology Liutauras Marcinauskas for
assistance analyzing results and valuable observations.
5
Introduction
Electrochemical capacitors have been known since many years. First patents date
back to 1957 where a capacitor based on high surface area carbon was described by
Becker. Later in 1969 first attempts to market such devices were undertaken by
company SOHIO. However, only in the nineties electrochemical capacitors became
famous in the context of hybrid electric vehicles.
Electrochemical capacitors fill in the gap between batteries and conventional
capacitors such as electrolytic capacitors or metallized film capacitors. In terms of
specific energy as well as in terms of specific power this gap covers several orders of
magnitude [1].
Batteries and low temperature fuel cells are typical low power devices whereas conventional capacitors may have a power density of >106watts per dm3 very low at energy density. Thus, electrochemical capacitors may improve battery performance in
terms of power density or may improve capacitor performance in terms of energy
density when combined with the respective device. In addition, electrochemical
capacitors are expected to have a much longer cycle life than batteries because no or
negligibly small chemical charge transfer reactions are involved [2].
Fig. 1 shows a schematic diagram of an electrochemical double-layer capacitor
consisting of a single cell with a high surface-area electrode material, which is loaded
with electrolyte. The electrodes are separated by a porous separator, containing the same electrolyte as the active material. Concentrated potassium alkali (KOH) (10 mol dm-3,
40 mL) is used as electr
6
Fig. 1. Principle of a single-cell double-layer capacitor
In previous studies it was shown that ruthenium oxide (RuO2) is the most suitable material for the production of supercapacitors. Though ruthenium oxide has many
advantages  such as high specific capacitance, high conductivity  new materials as
alternatives to its cost and certain technological problems of its production started to be
searched for. One of the alternative materials is an activated carbon, which is used for
the production of electrodes of supercapacitors. Activated carbon suits well for the
production of supercapacitors due to its large surface area, which directly influences
capacitance. Activated carbon also is characterised by superb temperature stability and
relatively low cost. Together with carbon, nickel oxide (NiO) is also used for the
production of electrodes of supercapacitors. Nickel oxide acts as catalyst and increases the area of active surface [3, 4]. Concentrated potassium alkali (KOH) (10mol dm-3,
40mL) is used as electrolyte in supercapacitors. Many methods are used for the
production of activated carbon electrodes: anodic deposition, chemical reactions,
electrochemical deposition, magnetron sputtering deposition, thermal evaporation
method, pulsed laser deposition and plasma spray.
In this study, the two-stage electrode formation method is used, encompassing the
methods of plasma spray and magnetron sputtering deposition [5, 6]. The method
plasma spray is used for the deposition of activated carbon while magnetron sputtering
technique is used to deposit nickel oxide on the top of carbon layer. Using these
electrodes, supercapacitors have been fabricated and their characteristics analyzed.
Main objectiveis to:
Investigation of structure and electrical
characteristics
of
supercapacitors
electrodes produced by atmospheric pressure plasma torch has been done.
Determination of thin layer nickel oxide deposited on carbon and influence of plasma-
chemical etching on material structure an
performed.
d electrical characteristics of electrodes was
7
Main tasks:
1. 2. 
3. 
4. 
5. 
To form carbon electrodes by plasma torch at atmospheric pressure To deposit nanometer thick NiO layers on the surface of carbon electrodes by magnetron sputtering.
To investigate the influence of plasma properties on the structure and surface topography of carbon electrodes.
To evaluate the influence of NiO deposited quantity and plasma-chemical etching of carbon on the properties of supercapacitors.
To optimize the electrical characteristics of resulting supercapacitors.
Innovations of this work:
For the production of carbon electrodes for supercapacitorsAr/C2H2 atmospheric plasma was used. Though, the data concerning the carbon coatings deposited using
acetylene gas are sufficiently explored, but information on application for electrode production is not found in scientific publications. The influence of Ar/C2H2plasma parameters on the electrical and physical characteristics of electrodes of supercapacitors
was investigated. The magnetron deposition method was employed to form NiO thin
layer on carbon surface. The influence of nanometer thick NiO layers on the electrical
parameters of supercapacitors was investigated.
Positions to defend:
1. 
8
Experimental data and numerical modeling results suggest that the electrical parameters of supercapacitors and carbon electrode structure depend on the
plasmatron power and acetylene content in the atmospheric pressure plasma jet.
Increasing the quantity of acetylene, the size of generated micropores on electrode surface increases. Increasing the amount of sp2bonds, the capacity of the capacitor increases. Changing the quantity of the acetylene in the plasma flow, the
supercapacitor voltage stability changes slightly (in the range from 0.5 to 0.55 V).
2. 
3.
From the theoretical and experimental results it was determined that the deposition of a small amount (12-240 µg/2) of nickel oxide on the carbon electrode surface cm increases the capacity of supercapacitor and changes the surface microstructure.
Three-dimensional dispersive surface structure disappears when the quantity of nickel oxide deposited on carbon electrode exceeds 48 µg/cm2. Maximum capacity of supercapacitor is obtained for 48 µg/cm2of NiO. The mean stability voltage of
carbon electrode with NiO - 0.35 V and it is about 1.5 times less than for
supercapacitor with electrodes made of carbon.
It was estimated that the irradiation of carbon electrodes with oxygen plasma
allows to change the surface microstructure and to increase the capacity of
supercapacitor. The interaction of carbon electrode surface with oxygen plasma
leads to the etching of isotropic microbeads. The mean capacity of carbon
electrodes with the surface affected by oxygen plasma is larger than electrodes
without etching, but smaller than those with small amount of nickel oxide
vaporized on the surface. Meanwhile, the carbon electrodes etched by oxygen
plasma have no influence to the supercapacitor stability voltage.
Approbation:
The results presented in this thesis are published in 7 international scientific papers:
3 of them are the published in the ISI-rated journals. Also the results were presented at 8
International Conferences.
Papers from the Master List of the Institute for Scientific Information:
1. . Kavaliauskas, L. L. Pranevičius, L. Marcinauskas, P. Valatkevičius. Deposition of carbon electrodes for supercapacitors using atmospheric plasma torch.
Mediagotyra, Vol. 15, No. 2, pp. 99-102 (2009).
9
Presentations at conferences:
4. 
. Kavaliauskas, L. Marcinauskas. Electrical characteristics of double-layer supercapacitors. Jaunoji energetika, pp. 433-437 (2010).
technologijos, Kaunas, 2008 m. 01-31 02-01 d. Oral presentation. 2. . Kavaliauskas, L.L. Pranevičius, L. MarcinauskasP. Valatkevičius,The role of thin nio2 on the top of carbon electrode on the parameters of supercapacitors, film Jaunoji energetika, Kaunas, 2008 m. May 29 d. Oral presentation.
dang atmosferinio sl formavimasgio plazmos sraute, ilumos energetika ir
1. . Kavaliauskas, L. Marcinauskas, L.L. Pranevičius. Suprekondensatori elektrod
10
2. 
3. 
92-94 (2010).
stability of supercapacitor. High temperature material processes. Vol. 14, No. 3 pp.
. Kavaliauskas, L. Pranevičius, L. Marcinauskas, P. Valatkevičius. Atmospheric Plasma Carbon Materials for Supercapacitor Electrodes. Electrical review, No 7 pp.
Papers published in the others scientific journals:
237-244 (2010).
3. . Kavaliauskas, L. Marcinauskas, L. Pranevičius, A. Baltunikas. Properties of supercapacitors fabricated by plasma technologies. Jaunoji energetika, pp. 1-5
(2009).
1. . Kavaliauskas, L. Marcinauskas, L.L. Pranevičius. Suprekondensatori elektroddang formavimas atmosferinio slgio plazmos sraute, ilumos energetika ir
technologijos, pp. 25-27 (2008). 2. . Kavaliauskas, L.L. Pranevičius, L. MarcinauskasP. Valatkevičius,The role of thin nio2 film on the top of carbon electrode on the parameters of supercapacitors, Jaunoji energetika, pp. 10-15 (2008).
. Kavaliauskas, L. Marcinauskas, L.L. Pranevičius, L. Pranevičius, P. Valatkevicius. Influence of nickel oxide amount on electrical parameters and
3. 
. Kavaliauskas, L.L. Pranevičius, L. Marcinauskas, L. Pranevičius, P. Valatkevičius, Effects of thin NiO film on plasma spray deposited carbon electrodes
for supercapacitors, Ion implantation and other applications of ions and electrons,
Kazimierz Dolny Lenkija, 2008 m. June 16-19 d. Poster presentation.
4. . Kavaliauskas, L. Marcinauskas, L. Pranevičius, A. Baltunikas. Properties of supercapacitors fabricated by plasma technologies. Jaunoji energetika, Kaunas, 2009
m. May 28 d. Oral presentation.
5. . Kavaliauskas, L. Marcinauskas. Electrical characteristics of double-layer supercapacitors. Jaunoji energetika, Kaunas, 2010 m. May 27 d. Oral presentation.
6. . Kavaliauskas, L.L. Pranevičius, L. Marcinauskas, P. Valatkevičius, Atmospheric Plasma Carbon materials for supercapacitor electrodes. New electrical and
electronic technologies and their industrial implementation, Zakopan, Lenkija,
2009 m. June 13-26 d. Poster presentation.
7. . Kavaliauskas, L. Pranevičius, P. Valatkevičius. Studies of carbon nanotopography effects the capacity of supercapacitor. Systems with Fast Ionic
8. 
Transport, Ryga, Latvija, 2010 m. June 1  5 d. Poster presentation.
. Kavaliauskas, L. Marcinauskas, P. Valatkevičius. Enhanced capacitance of porous carbon electrodes through deposition of small amounts of NiO. Ion
Implantation and other Applications of Ions and Electrons, Kazimierz Dolny,
Lenkija, 2010 m. June 14  17 d. Poster presentation
Authors contributions:
The author of thesis contributed in all experiments and experimental measurements,
preparation of experimental methodic and partly in numerical calculations, processing
of experimental results, their interpretations and publishing.
The outline of main results
The thesis consists: introduction, experimental results, modeling and conclusions
and a list of references.
11
  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents