Lietuvos pieninių galvijų pieno baltymų genetiniai tipai ir jų ryšys su produktyvumu ; Genetic types of milk proteins prevalence and their relation with production traits in Lithuanian dairy cattle breeds
11 pages

Lietuvos pieninių galvijų pieno baltymų genetiniai tipai ir jų ryšys su produktyvumu ; Genetic types of milk proteins prevalence and their relation with production traits in Lithuanian dairy cattle breeds

-

Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres
11 pages
Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres

Description

The work was carried out at the Lithuanian Veterinary Academy in 2001–2005. LITHUANIAN VETERINARY ACADEMY Research supervisor: Assoc. prof. dr. Ilona Miceikien ė (Lithuanian Veterinary Academy, biomedical sciences, zootechny –13B). Chairman of Zootechny science council: Nijol ė Pe čiulaitien ė Prof. habil. dr. Romas Gružauskas (Lithuanian Veterinary Academy, biomedical sciences, zootechny – 13B). Members: Prof. at Incumbent, dr. Antanas Sederevi čius (Lithuanian Veterinary Academy, biomedical sciences, veterinary medicine – 12B); Prof. habil. dr. Algimantas Mikel ėnas (Lithuanian Veterinary Academy, GENETIC TYPES OF MILK PROTEINS PREVALENCE biomedical sciences, zootechny – 13B); Prof. habil. dr. Aniolas Sruoga (VU Ecology Institute, biomedical sciences, AND THEIR RELATION WITH PRODUCTION TRAITS IN biology – 01B); Dr. Violeta Juškien ė (LVA Institute of Animal Sciences, biomedical sciences, LITHUANIAN DAIRY CATTLE BREEDS zootechny – 13B). Opponents: Prof. habil. dr. Česlovas Jukna (Lithuanian Veterinary Academy, biomedical sciences, zootechny – 13B); Assoc. prof. dr. Sigut ė Kuusien ė (Institute of Forest, biomedical sciences, biology – 01B) Summary of doctoral thesis Public defence of doctoral thesis in Zootechny science council will take place at Biomedical sciences, zootechny (13B) th the Lithuanian Veterinary Academy I auditorium 2 pm LT on 12 September of 2005.

Sujets

Informations

Publié par
Publié le 01 janvier 2005
Nombre de lectures 59

Extrait

LITHUANIAN VETERINARY ACADEMY
Nijol
ė
Pe
č
iulaitien
ė
GENETIC TYPES OF MILK PROTEINS PREVALENCE
AND THEIR RELATION WITH PRODUCTION TRAITS IN
LITHUANIAN DAIRY CATTLE BREEDS
Summary of doctoral thesis
Biomedical sciences, zootechny (13B)
Kaunas, 2005
2
The work was carried out at the Lithuanian Veterinary Academy in 2001–2005.
Research supervisor:
Assoc. prof. dr. Ilona Miceikien
ė
(Lithuanian Veterinary Academy, biomedical
sciences, zootechny –13B).
Chairman of Zootechny science council:
Prof. habil. dr. Romas Gružauskas (Lithuanian Veterinary Academy, biomedical
sciences, zootechny – 13B).
Members:
Prof. at Incumbent, dr. Antanas Sederevi
č
ius (Lithuanian Veterinary Academy,
biomedical sciences, veterinary medicine – 12B);
Prof. habil. dr. Algimantas Mikel
ė
nas (Lithuanian Veterinary Academy,
biomedical sciences, zootechny – 13B);
Prof. habil. dr. Aniolas Sruoga (VU Ecology Institute, biomedical sciences,
biology
01B);
Dr.
Violeta Juškien
ė
(LVA Institute of Animal Sciences, biomedical sciences,
zootechny – 13B).
Opponents:
Prof. habil. dr.
Č
eslovas Jukna (Lithuanian Veterinary Academy, biomedical
sciences, zootechny – 13B);
Assoc. prof. dr. Sigut
ė
Kuusien
ė
(Institute of Forest, biomedical sciences, biology
– 01B)
Public defence of doctoral thesis in Zootechny science council will take place at
the Lithuanian Veterinary Academy I auditorium 2 pm LT on 12
th
September of
2005.
Address: Tiž
ė
s 18, LT- 47118 Kaunas, Lithuania.
The abstract of doctoral thesis has been send on 12
th
of August 2005 according to
confirmed address list.
The doctoral thesis is available at the library of the Lithuanian Veterinary
Academy.
3
LIETUVOS VETERINARIJOS AKADEMIJA
Nijol
ė
Pe
č
iulaitien
ė
LIETUVOS PIENINI
Ų
GALVIJ
Ų
PIENO BALTYM
Ų
GENETINIAI TIPAI IR J
Ų
RYŠYS SU PRODUKTYVUMU
Daktaro disertacijos santrauka
Biomedicinos mokslai, zootechnika (13B)
Kaunas, 2005
4
Darbas atliktas 2001-2005 metais Lietuvos veterinarijos akademijoje.
Mokslinio darbo vadovas:
doc. dr. Ilona Miceikien
ė
(Lietuvos veterinarijos akademija, biomedicinos
mokslai, zootechnika – 13B).
Zootechnikos mokslo krypties disertacijos gynimo taryba
Pirmininkas:
prof.
habil.
dr.
Romas
Gružauskas
(Lietuvos
veterinarijos
akademija,
biomedicinos mokslai, zootechnika – 13B).
Nariai:
e. prof. p. dr. Antanas Sederevi
č
ius (Lietuvos veterinarijos akademija,
biomedicinos mokslai, veterinarin
ė
medicina – 12B);
prof. habil. dr. Algimantas Mikel
ė
nas (Lietuvos veterinarijos akademija,
biomedicinos mokslai, zootechnika – 13B);
prof. habil. dr. Aniolas Sruoga (VU Ekologijos institutas, biomedicinos mokslai,
biologija – 01B);
dr. Violeta Juškien
ė
(LVA Gyvulininkyst
ė
s institutas, biomedicinos mokslai,
zootechnika – 13B).
Oponentai:
prof. habil. dr.
Č
eslovas Jukna (Lietuvos veterinarijos akademija, biomedicinos
mokslai, zootechnika – 13B);
doc. dr. Sigut
ė
Kuusien
ė
(Lietuvos mišk
ų
institutas, biomedicinos mokslai,
biologija – 01B).
Disertacija bus ginama viešame Zootechnikos mokslo krypties tarybos pos
ė
dyje,
kuris
į
vyks 2005 m. rugs
ė
jo m
ė
n. 12d. 14 val. Lietuvos veterinarijos akademijos I
auditorijoje.
Adresas: Tiž
ė
s 18, LT- 47118, Kaunas, Lietuva.
Disertacijos santrauka išsi
ų
sta 2005 m. rugpj
ūč
io m
ė
n. 12 d. pagal patvirtint
ą
adres
ų
s
ą
raš
ą
.
Su disertacija galima susipažinti Lietuvos veterinarijos akademijos bibliotekoje.
5
Introduction
Dairy cattle breeding is one of the main Lithuanian husbandry branch. In
Lithuania same as in other European Union countries dairy cattle breeding hold
the major part in animal husbandry. Geographical situation, perfect climate and
sufficient feed supply is very favourable for dairy cattle breeding development in
Lithuania. Additionally, dairy cattle breeding taking priority in agricultural and
food industry branch. Biologically milk is very valued food product available
from dairy cattle breeding. Milk and it’s products are significant of human
nutrition, containing all necessary feed substances for organism grow as: fat,
protein, carbohydrate and mineral materials. Milk contains over 200 various
substances essential for cells resumption and energy supply in human organism
(Japertas S., 2003). Milk, as food product passed long and tricky way from
newborn food till wide assortment of milk products (Fries R. et al, 1999).
Nowadays Lithuanian food industry has technological potential to produce
various dairy products of more than 130 names. Nutrition specialists from
different countries recommend to consume 400 – 500 kg of dairy products: 180 kg
of raw milk, 135 kg of butter, 185 kg of cheese, curd, sour cream and other dairy
products for one person per year. High quality milk can be yielded only from
healthy cows of high genetic value and employing advanced feeding and cow
breeding technologies (Jukna
Č
., 1998). Cattle’s selection activity in Lithuania is
oriented towards increasing of milk yield and fat content, especially towards
increasing of protein content in milk. Milk yield and its comprising substances are
classical quantitative traits, influenced by various genes and conditions of an
environment (Jukna
Č
, 2003). Quantitative traits, such as reproduction properties,
rate of growth, weight gain, milk yield, amount of protein and fat depend on
activity of genes located in particular places of a chromosome – in loci.
Inheritance of quantitative traits is unceasing and it is displayed gradually from
the most weak up to maximum, it is observed in several individuals and actually
in the whole population (Fries R. et al., 1999).
Studying the genome of agricultural animals, we face a problem of mutability of
the quantitative traits. Therefore, on purpose to avoid unwanted variation of the
expectative traits and to increase efficiency of selection, it is expedient to carry
out analysis of the quantitative traits in genome of agricultural animals. After
determining of quantitative trait locus (QTL), where alleles of a gene in a
particular state determine expression of certain or several quantitative traits, the
possibilities arise to implement purposeful selection of agricultural animals
depending on expectative quantitative trait and maximal expression of the
desirable trait can be expected.
Not only quality of milk depends on a type of proteins in milk and consequently
on genes of genotype that determine them, but the possibilities of milk’s
processing and it’s availability for production of particular dairy products as well.
Therefore, after determining loci conditioning expression of milk’s protein of
desirable type presented in a genome of animals, it is possible to carry out
purposeful selection in pursuance of desirable milk proteins and to increase
economical efficiency of selection. Modern methods of molecular genetics that
6
employ the specific gene markers in animals’ selection significantly increase its
efficiency, because with the help of them it is possible to implement selection
according to one and even few traits, expression of which is determined by one or
several bonded genes. This method of determining of quantitative traits is named
MAS (marker-asisted selection) (Threadgill D.W. et al, 1990; Lunder A. et al,
1997).
Aim of the present study
To investigate distribution of milk protein genetic types and to estimate their
influence for milk yield, quality and milk composition substances in Lithuanian
dairy cattle population.
Tasks of the present study
1.
To evaluate the polymorphism of milk protein Alpha
s1
-casein, Kapa- casein,
and Beta-lactoglobulin genes in four Lithuanian dairy cattle breeds:
Lithuanian White Backed, Lithuanian Light Grey, Lithuanian Red and
Lithuanian Black & White.
2.
To estimate of milk protein genotypes Alpha
s1
-casein, Kapa- casein, and
Beta-lactoglobulin influence for milk yield and milk composition.
3.
To investigate influence of milk protein Alpha
s1
-casein, Kapa-casein, and
Beta-lactoglobulin genes for milk yield and milk composition.
4.
To evaluate influence of milk protein Alpha
s1
-casein, Kapa-casein haplotypes
for milk yield and milk composition in Lithuanian dairy cattle population.
Novelty of the present study
First time was investigated distribution of genes coding for milk protein diversity
in Lithuanian dairy cattle population and milk protein genes influencing milk
yield and composition.
Practical importance
According to research results, offer take into account to specific genes loci in
cattle genome, influencing expression of desirable milk protein types. Select
animals, owning Kapa-casein B and Beta-lactoglobulin B alleles and create
specific cattle herds be able to produce qualitative milk suitable for curd and
cheese industry. Obtained results could be maintained as official selection
criterion, genetically improving milk renneting traits in Lithuanian dairy cattle
population.
Materials and Methods
Research work was performed in Lithuanian Veterinary Academy, K. Janušauskas
Laboratory of Animal Genetics 2001–2005.
Samples and laboratory methods
In the study to characterize milk protein polymorphism were collected 427 (
-
394;
-33 ) unrelated animals from four Lithuanian dairy cattle breeds:
7
Lithuanian Black & White–125, Lithuanian Red–181, Lithuanian Light Grey–70
and Lithuanian White Backed–49.
For milk protein genes influence to productivity of milk and milk composition
traits were evaluated 394 unrelated Lithuanian dairy cows: Lithuanian Black &
White–109, Lithuanian Red–168, Lithuanian Light Grey–68 and Lithuanian
White Backed–49.
The data of productivity of animals were obtained from Record Processing Center
SE “Kaimo verslo pl
ė
tros ir informacijos centras”.
Blood samples for DNA genotyping were extracted using standard phenol-
chloroform purification method (Miller et al, 1988). Hair root samples for DNA
genotyping were extracted using method recieved fromVan Haeringen laboratory
(Holland) and deep – frozen sperm using standard phenol-chloroform purification
method according to dr. J. Kantanen MTT (Finland).
The identification of milk protein genotypes has been tested by methodology
based on a polymerase chain reaction (PCR) (Sakai R.K. at al, 1988). The
amplified DNA fragment was digested with restriction nucleases (RFLP).
Visualization of the different milk protein genetic types was carried out after
staining the gels with ethidium bromide, using Bio Doc 1000 video
documentation system (BioRad, USA).
Statistical analysis
Allele frequencies and mean expected heterozygosities per locus and population
were calculated using the
POP
100
GENE
(Hood G., 2002) computer program.
Haplotype frequencies for the casein linkage group were calculated according to
computer program
ARLEQUIN
v. 2.0 (Schneider S. et al., 2000).
The mean number of alleles per locus, mean expected heterozygosity and mean
observed heterozygosity were calculated using FSTAT 2.93 (Goudet J., 1995).
Deviations from Hardy-Weinberg equilibrium were tested by computer program
ARLEQUIN
v. 2.0 (Schneider S. et al., 2000).
Monofactor and multifactor dispersion analysis (ANOVA) were calculated using
the R statistical package and effects of milk protein Kapa-casein, Alpha
s1
-casein
and Beta-lactoglobulin genes on milk production traits were estimated.
Effects of genes Kapa-casein, Alpha
s1
-casein and Beta-lactoglobulin on milk yield
and milk composition traits were considered with the following linear models:
Milk yield
ijklmno
=
μ
+ Kapa-casein
i
+ Beta-lactoglobulin
j
+ Alpha
s1
-casein
k
+
breed
l
+ herd
m
+ lactation
n
+ e
ijklmno
Fat, %
ijklmnop
=
μ
+ Kapa-casein
i
+ Beta-lactoglobulin
j
+ Alpha
s1
-casein
k
+ breed
l
+
herd
m
+ lactation
n
+ regression with milk amount
o
+ e
ijklmnop
Fat, kg
ijklmnop
=
μ
+ Kapa-casein
i
+ Beta-lactoglobulin
j
+ Alpha
s1
-casein
k
+ breed
l
+
herd
m
+ lactation
n
+ regression with milk amount
o
+ e
ijklmnop
Protein, %
ijklmnop
=
μ
+ Kapa-casein
i
+ Beta-lactoglobulin
j
+ Alpha
s1
-casein
k
+
breed
l
+ herd
m
+ lactation
n
+ regression with milk amount
o
+ e
ijklmnop
Protein, kg
ijklmnop
=
μ
+ Kapa-casein
i
+ Beta-lactoglobulin
j
+ Alpha
s1
-casein
k
+
breed
l
+ herd
m
+ lactation
n
+ regression with milk amount
o
+ e
ijklmnop
8
Effects of milk protein Alpha
s1
-casein, Kapa-casein haplotypes for milk yield and
milk composition traits were considered with the following linear models:
Milk yield
ijklm
=
μ
+ haplotype
i
+ breed
j
+ herd
k
+
lactation
l
+
e
ijkm
Fat, %
ijklmn
=
μ
+ haplotype
i
+ breed
j
+ herd
k
+ lactation
l
+ regression with milk
amount
m
+ e
ijklmn
Fat, kg
ijklmn
=
μ
+ haplotype
i
+ breed
j
+ herd
k
+ lactation
l
+ regression with milk
amount
m
+ e
ijklmn
Protein, %
ijklmn
=
μ
+ haplotype
i
+ breed
j
+ herd
k
+ lactation
l
+ regression with milk
amount
m
+ e
ijklmn
Protein, kg
ijklmn
=
μ
+ haplotype
i
+ breed
j
+ herd
k
+ lactation
l
+ regression with
milk amount
m
+ e
ijklmn
Results and Discussion
Evaluation and distribution of milk protein genes polymorphism in Lithuanian
dairy cattle population
Lithuanian dairy cattle breeds were investigated for 3 milk protein systems, 8
different milk protein typess. Frequencies of Alpha
s1
-casein, Kapa- casein, and
Beta-lactoglobulin typess for each breed separately were estimated.
Table 1
. A frequency of different milk protein types for Alpha
s1
-casein, Kapa-
casein and Beta-lactoglobulin in four Lithuanian cattle breeds
1 lentel
ė
. Pieno baltym
ų
Alfa
s1
, Kapa kazein
ų
ir Beta-laktoglobulino aleli
ų
dažniai Lietuvos pienini
ų
galvij
ų
veisl
ė
se
Breeds
Milk protein
types
Lithuanian
dairy cattle
population
n=427
Lithuanian
White
Backed
n=51
Lithuanian
Light
Grey
n=70
Lithuanian
Red
N=181
Lithuanian
Black &
White
n=125
Alpha
s1
-casein
B
0.949
0.948
0.976
0.985
0.885
C
0.050
0.051
0.024
0.015
0.115
Kapa-casein
A
0.739
0.731
0.735
0.714
0.752
B
0.218
0.238
0.228
0.265
0.161
E
0.041
0.010
0.037
0.021
0.087
Beta-lactoglobulin
A
0.290
0.378
0.551
0.068
0.431
B
0.705
0.622
0.449
0.923
0.569
C
0.003
-
-
0.009
-
According to research results, the B types of Alpha
s1
-casein was found as
predominant in all four studied breeds and varied from (0,885) Lithuanian Black &
White to (0,985) Lithuanian Red. We can assume, that the most common Alpha
s1
-
casein B types was associated with high milk yield (Ng-Kwai-Hang K. F. et al,
1984).
The most common A and B types of milk protein Kapa-casein was found at high
frequency in all four investigated cattle breeds. Desirable B types of Kapa-casein,
9
related to the higher protein percentage and renneting time a has a favorable effect
on the concentration of milk components, as well as physico-chemical and
technological properties of milk (Kübarsepp I., et al, 2004; Strzalkowska N. et al,
2002; Lien S. et al, 1999; Van Eenennaam A. et al, 1991; Marzialini A.S. et al,
1986; Schaar J. et al, 1985; McLean D.M. et al, 1984). In Lithuanian dairy cattle
breeds important B types was found at frequencies ranging from (0,265)
Lithuanian Red to (0,161) Lithuanian Black & White. According B types of Kapa-
casein pursued selection of animals and create specific cattle herds in some
countries. Rare E types of Kapa-casein originated from Lowland cattle breeds such
as Ayrshire, Holstein, Germany Red & White (Erhardt G. et al, 1997) was
identified in all Lithuanian dairy cattle breeds at very low frequency. E types of
Kapa-casein was detected at superior frequency (0,087) only in Lithuanian Black
& White, compare with other breeds. The detection of E allele in all studied
Lithuanian breeds reflected that these breeds might belong to Lowland breeds or
might be improved by using Lowland cattle breeds.
Whey protein Beta-lactoglobulin only A and B types were spread in many
European dairy cattle breeds (Hill J.P. et al, 1993). Favourable for milk industry B
types of Beta-lactoglobulin was most common to European cattle breeds, like
Ayrshire, Shorthorn and Red Danish and has been known as predominant in the
Holstein breed. All Lithuanian dairy cattle breeds had high frequency of Beta-
lactoglobulin B types the highest frequency was in Lithuanian Red breed (0.923)
the lowest in Lithuanian Light Grey (0.449) (Table. 1).
Table 2.
Alpha
s1
-casein, Kapa-casein and Beta-lactoglobulin genotype frequencies
in Lithuanian dairy cattle breeds.
2 lentel
ė
. Alfa
s1
, Kapa kazein
ų
ir Beta- laktoglobulino genotip
ų
dažniai Lietuvos
pienini
ų
galvij
ų
veisl
ė
se
Breeds
Milk
protein
genotypes
Lithuanian
dairy cattle
population
n=427
Lithuanian
White
Backed
n=51
Lithuanian
Light Grey
n=70
Lithuanian
Red
n=181
Lithuanian
Black &
White
n=125
Alpha
s1
- casein
BB
0.903
0.932
0.968
0.979
0.775
BC
0.091
0.068
0.032
0.021
0.224
CC
0.005
-
-
0.012
-
Kapa-casein
AA
0.525
0.477
0.492
0.553
0.561
AB
0.363
0.364
0.429
0.369
0.265
AE
0.066
0.045
0.032
0.028
0.122
BB
0.018
0.114
0.032
0.042
-
BE
0.028
-
0.016
0.007
0.051
Beta-lactoglobulin
AA
0.132
0.136
0.206
0.007
0.163
AB
0.317
0.477
0.508
0.128
0.469
BB
0.543
0.387
0.286
0.851
0.367
BC
0.007
-
-
0.014
-
10
Milk protein Alpha
s1
-casein BB genotype had a positive influence on milk yield,
had been most common to the dairy cattle and was observed at high frequency in
all four studied Lithuanian cattle breeds. However, BB genotype of Alpha
s1
-casein
was highly frequent in Lithuanian Red breed (0.979) and CC genotype was found
only in Lithuanian Red.
Kapa-casein plays an important role in milk properties of cheese and curd
formation. AA and AB genotypes of Kapa-casein were detected in all studied dairy
breeds at relatively high frequency. In Lithuanian White Backed, Lithuanian Light
Grey and Lithuanian Red breeds the favorable BB genotype was detected at very
low frequency and was totally absent in Lithuanian Black & White breed.
According researcher Bonvillani A.G. et al, (2000) Kapa-casein BB genotype also
was not detected in Argentine Holstein cattle. Higher frequency of Kapa-casein
BB genotype has been detected in Lithuanian White Backed cattle.
The milk with BB genotype of Beta-lactoglobulin contained more casein and fat
than the milk produced by Beta-lactoglobulin AA genotype. BB genotype of
Beta-lactoglobulin was observed very high frequency in Lithuanian Red breed
(0.851) and BC genotype was found with low frequency (0,014) only in
Lithuanian Red breed. AA genotype of Beta-lactoglobulin, which has effect on
milk and protein yield, was detected in all studied breeds with frequency ranging
from 0,007 Lithuanian Red to 0,206 Lithuanian Light Grey breeds (Table. 2).
Table 3
. Mean expected and observed heterozygosity in Lithuanian dairy cattle
breeds
3 lentel
ė
.
Vidutinis teorinis ir faktinis heterozigotiškumas tirtose veisl
ė
se
Lithuanian
dairy cattle
population
Lithuanian
White
Backed
Lithuanian
Light
Grey
Lithuanian
Red
Lithuanian
Black &
White
Heterozygosity
(obs)
0.291
0.318
0.370
0.189
0.377
Heterozygosity
(exp)
0.305
0.296
0.339
0.194
0.364
χ
2
-test
(P– meaning)
5.4540
(0.9999)
7.5999
(0.7486)
5.1468
(0.9238)
43.2523
(0.0001)
7.7346
(0.7368)
χ
2
test was estimated appreciation of genetics equilibrium in every Lithuanian
dairy cattle breeds and milk protein loci. Genetics equilibrium was estimated
according allele frequencies and their distribution in Lithuanian dairy breeds. The
comparison
of
average
expected
heterozygosity
and
average
observed
heterozygosity values did not show big differences in the studied breeds. The
mean observed heterozygosity was generally lower than expected heterozygosity
except in Lithuanian Red breed, where the result was opposite. All studied breeds
were in Hardy-Weinberg equilibrium, except Lithuanian Red breed (Table 3).
11
4 Table
. Mean expected and observed heterozygosity in milk protein loci
4 lentel
ė
. Vidutinis teorinis ir faktinis heterozigotiškumas pieno baltym
ų
lokusuose
Loci
Heterozygosity
(exp)
Heterozygosity
(obs)
χ
2
-test
(P- meaning)
Alpha
s1
-casein
0.0963
0.0913
1.060 (0.588)
Kapa-casein
0.4032
0.4467
6.313 (0.276)
Beta-lactoglobulin
0.4176
0.3248
21.688 (0.001)
Statisticaly significant deviations from Hardy-Weinberg equilibrium was found
only in Beta-lactoglobulin loci. Therefore in this loci lower allele frequencies and
majority alleles composed homozygote genotypes (4 Table).
Genetic factors influencing to milk yield and composition in Lithuanian dairy
cattle population
Monofactor and multifactor dispersive analysis (ANOVA) were calculated for
effects of milk protein Kapa-casein, Alpha
s1
-casein and Beta-lactoglobulin genes
on milk production traits.
5 Table.
Influence of genetic factors to milk yield and composition in Lithuanian
dairy cattle population (n=394)
5 lentel
ė
. Genetini
ų
veiksni
ų į
taka pieno kiekiui ir sud
ėč
iai Lietuvos pienini
ų
galvij
ų
veisl
ė
se (n=394)
Genetic and
no genetic
factors
Number
of
classes
Milk, kg
Fat,
%
Fat, kg
Protein,
%
Protein, kg
Kapa-casein
5
2.5**
3.8
%
***
2.17
%
***
5.9
%
***
0.90
%
***
Beta-lactoglobulin
4
1.6
%
*
2.5
%
*
1.17
%
**
3.7
%
0.95
%
Alpha
s1
-casein
3
1.0
%
*
0.50
%
*
0.60
%
*
0.50
%
***
0.65
%
***
Breed
4
13.6
%
*
5.3
%
***
13.2
%
**
7.7
%
10.3
%
Herd
80
15.8
%
***
22.6
%
***
19.3
%
***
9.5
%
***
15.7
%
***
Lactation
8
8.5
%
***
0.5
%
6.8
%
3.3
%
***
10.4
%
***
Regression with
milk amount
c
-
0.01
%
45.0
%
***
0.04
%
52.2
%
***
*P<0.05; ** P<0.01; *** P< 0.001
Monofactor dispersive analysis (ANOVA) showed individual influence of milk
protein Alpha
s1
-casein, Kapa-casein, and Beta-lactoglobulin genes for milk yield
and milk composition. Both monofactor and multifactor dispersive analysis
(ANOVA) for three milk protein systems loci showed higher influence of Kapa-
casein gene for milk protein percentage (5.9%, P<0.001). Our results is in
accordance with other researches results (Schaar et al, 1985; Lin et al, 1986;
Bonvillani A.G. et al, 2000; Van Eenennaam A. et al, 1991). In the meantime
most statisticaly significant influence distinguished whey protein Beta-
lactoglobulin gene for fat percentage (2,5%; P<0,05) (5 Table).
12
In Lithuanian dairy cattle population were estimated parameters of milk yield and
milk composition according all milk protein genotypes.
a)
2,5
3
3,5
4
4,5
5
5,5
AA
AB
AE
BB
BE
Kapa- casein genotypes
%
4000
4500
5000
5500
6000
6500
kg
Fat,%
Protein,%
Milk, kg
b)
100
150
200
250
300
AA
AB
AE
BB
BE
Kapa- casein genotypes
kg
4000
4500
5000
5500
6000
6500
kg
Fat, kg
Protein, kg
Milk, kg
1 Figure
. Milk protein Kapa-casein genotypes according milk yield and milk
composition in Lithuanian dairy cattle population
1 paveikslas
. Pieno kiekio ir pieno sud
ė
tini
ų
dali
ų
vidurki
ų
palyginimas pagal
pieno baltymo Kapa-kazeino genotipus Lietuvos pienini
ų
galvij
ų
populiacijoje
It was assessed that BB genotype of milk protein Kapa-casein locus effected
major milk fat (4.50±0.5%) and protein (3.47±0.04%) averages, whereas Kapa-
casein BE genotype could be characterized by higher milk yield average
(5776±27 kg). The obtained results showed that BB genotype have positive effect
on milk protein composition, however this genotype have negative effect on milk
yield. Our obtained results coincided with literature data (Bovenhuis H. et al,
1991, Ikonen T. et al, 2000) (1 Figure).
13
a)
2,5
3
3,5
4
4,5
BB
BC
CC
Alphas1-casein genotypes
%
3500
4000
4500
5000
5500
kg
Fat, %
Protein, %
Milk, kg
b)
2,5
52,5
102,5
152,5
202,5
252,5
BB
BC
CC
Alphas1-casein genotypes
kg
3500
4000
4500
5000
5500
kg
Fat, kg
Protein, kg
Milk, kg
2 Figure
. Milk protein Alpha
s1
-casein genotypes according milk yield and milk
composition in Lithuanian dairy cattle population
2 paveikslas
. Pieno kiekio ir pieno sud
ė
tini
ų
dali
ų
vidurki
ų
palyginimas pagal
pieno baltymo Alfa
s1
-kazeino genotipus Lietuvos pienini
ų
galvij
ų
populiacijoje
Alpha
s1
-casein BB genotype effected higher milk yield average (5242±14 kg),
whereas Alpha
s1
-casein CC genotype was superior in protein average
(3.64±0.09%) (2 Figure).
14
a)
2,5
3
3,5
4
4,5
5
AA
AB
BB
BC
Beta -lactoglobulin genotypes
%
3800
4300
4800
5300
kg
Fat, %
Protein, %
Milk, kg
b)
100
120
140
160
180
200
220
240
AA
AB
BB
BC
Beta -lactoglobulin genotypes
kg
3800
4300
4800
5300
kg
Fat, kg
Protein, kg
Milk, kg
3 Figure.
Whey protein Beta-lactoglobulin genotypes according milk yield and
milk composition in Lithuanian dairy cattle population
3 paveikslas
. Pieno kiekio ir pieno sud
ė
tini
ų
dali
ų
vidurki
ų
palyginimas pagal
pieno išr
ū
g
ų
baltymo Beta-laktoglobulino genotipus Lietuvos pienini
ų
galvij
ų
populiacijoje
The whey protein BB genotype of Beta-laktoglobulin locus had influenced major
milk fat (4.67±0.01%) average, whereas Beta-laktoglobulin BC genotype was
superior in protein average (3.6±0.12%). The whey protein of Beta-laktoglobulin
influence for milk fat percentage and stock of casein in milk certified in many
study (Ng-Kwai-Hang K.F. et al, 1990; Ng-Kwai-Hang K. F. et al, 1984; Van
Eenennaam A. et al, 1991) (3 Figure).
15
6 Table
. Haplotype of Alfa
s1
-Kapa casein, breed, herd and lactation influence to
milk yield and composition in Lithuanian dairy cattle population, (n=394)
6 lentel
ė
. Alfa
s1
-Kapa kazein
ų
haplotip
ų
, veisl
ė
s,
ū
kio ir laktacijos
į
taka pieno
kiekiui ir sud
ėč
iai Lietuvos pienini
ų
galvij
ų
populiacijoje, (n=394)
Genetic and
no genetic factors
Number
of classes
Milk, kg
Fat,
%
Fat, kg
Protein,
%
Protein, kg
Alpha
s1
-Kapa
haplotype
5
0.7
%
1.1
%
***
0.7
%
***
2.2
%
***
0.4
%
***
Breed
4
12.0
%
*
9.0
%
**
17.9
%
**
10.8
%
*
12.7
%
***
Herd
80
28.4
%
***
25.4
%
***
30.8
%
*** 20.0
%
***
24.6
%
***
Lactation
8
6.9
%
***
0.53
%
**
5.7
%
**
3.2
%
***
8.5
%
***
Regression
with milk amount
c
-
0.10
%
*
50.7
%
*** 0.14
%
**
54.2
%
***
*P<0.05; ** P<0.01; *** P< 0.001
Alpha
s1
-Kapa haplotypes were associated with the highest protein percentage
(2.2%, P<0.001) and lowest protein, kg (0.4%, P<0.001) in bovine milk (6 Table).
a)
3
3,2
3,4
3,6
3,8
4
4,2
4,4
AB
AC
BB
BC
EB
Alphas1 - Kapa casein haploypes
%
4200
4400
4600
4800
5000
5200
5400
5600
5800
kg
Fat, %
Protein, %
Milk, kg
b)
100
120
140
160
180
200
220
240
AB
AC
BB
BC
EB
Alfas1 - Kapa casein haplotypes
kg
4200
4400
4600
4800
5000
5200
5400
5600
5800
kg
Fat, kg
Protein, kg
Milk, kg
4 Figure
. Milk protein Alpha
s1
-Kapa casein haplotypes according milk yield and
milk composition in Lithuanian dairy cattle population
4 paveikslas
. Pieno kiekio ir pieno sud
ė
tini
ų
dali
ų
vidurki
ų
palyginimas pagal
pieno baltym
ų
Alfa
s1
-Kapa kazein
ų
haplotipus Lietuvos pienini
ų
galvij
ų
populiacijoje
16
Milk protein Alpha
s1
-Kapa casein BC haplotypes, had most effect on average milk
protein percentage and AB haplotype was associated with average milk yield, kg
in studied Lithuanian dairy cattle population (4 Figure). Whereas BB haplotypes
of Alpha
s1
-Kapa casein had most effect on average milk fat percentage in studied
population and according literature data (Braunschweig M. et al, 2000) (4 Figure).
Conclusions
1.
After investigation the diversity of alleles and genotypes of milk proteins in
Lithuanian dairy cattle breeds was determined that, Lithuanian dairy cattle
population was polymorphic for all milk protein genes. The obtained results
create a possibility of selection with a purpose to improve processing
properties of milk in the population of Lithuanian dairy cattle.
2.
It was determined that the highest rate of Kapa-casein B allele (0,265) was
found in Lithuanian Red breed, whereas the highest rate of BB genotype
(0,114) was found in Lithuanian White-Backed breed. The highest rates of B
allele of Beta-lactoglobulin (0,923) and of BB genotype (0,851) were found
in Lithuanian Red breed. According to the number of the most beneficial
alleles and genotypes for milk processing Lithuanian Red breed was
distinguished among other analyzed breeds.
3.
Among three loci of milk’s proteins the highest influence on amount and milk
composition was determined for Kapa-casein gene, particularly on percent of
milk’s protein (5,9%; p<0,001). The gene of Beta-lactoglobulin demonstrated
the highest influence on a percent of fat (2,5%; p<0,05). The gene responsible
for the protein Alpha
s1
-casein had the lowest effect on amount and
composition of milk.
4.
After analysis of the influence of Alpha
s1
-Kapa-casein haplotypes, the highest
influence was determined on percent of milk’s protein (2,2%; p<0,001), the
lowest influence on the amount of fat (0,4%; p<0,001).
Proposals
1.
After introducing of the research method in respect of Beta-lactoglobulin and
Kapa-casein genes of milk’s protein, it could be possible to certificate
pedigree cattle – select cows, bulls and their semen genetically, according to
genes determining qualitative composition of milk’s protein. It could improve
their breeding value and could make it possible to improve quality of milk
genetically.
2.
On purpose to produce high quality milk products, it is possible to create
herds of cows possessing B type of Kapa-casein and Beta-lactoglobulin.
These herds could yield specific high quality milk for production of cheese
and curd.
3.
Genetic diversity of milk proteins could serve as criterion of selection and the
informative marker in research of filogenetic relationships and evolution of
breeds.
17
List of publications on the dissertation topic
Disertacijos tema paskelbt
ų
straipsni
ų
s
ą
rašas
1.
Miceikien
ė
, N. Pe
č
iulaitien
ė
, R. Petraškien
ė
. Milk protein genotypes and
their association with milk composition traits in the Lithuanian dairy cattle.
Medycyna Weterynaryjna” Lublin, Lenkija
. 2005.
ISSN
0025-8628. Vol.61.
P. 394-397.
2.
N.Pe
č
iulaitien
ė
, I. Miceikien
ė
, S. Kerzien
ė
. Lietuvos pienini
ų
galvij
ų
populiacijos pieno baltym
ų
genetin
ė
s
į
vairov
ė
s
į
taka pieno kiekiui ir pieno
sud
ėč
iai.
Veterinarija ir Zootechnika.
2005. Vol. 29(51). P. 98-103.
Research results were presented in 3 international conferences
Gauti tyrim
ų
rezultatai paskelbti 3 tarptautin
ė
se konferencijose
1.
J. Malevi
č
i
ū
t
ė
, N. Pe
č
iulaitien
ė
, I. Grigali
ū
nait
ė
, J. Ku
č
inskien
ė
, L.
Baltr
ė
nait
ė
, G. Erdhardt, I. Miceikien
ė
. Milk protein polymorphism in four
Lithuanian cattle breeds.
Tarptautinis minisimpoziumas „Farm animal
reproduction: Conserving local genetic resources”
Lietuva, Kaunas, 2003.
P.14-21.
2.
N. Pe
č
iulaitien
ė
, L. Baltr
ė
nait
ė
, J. Malevi
č
i
ū
t
ė
, I. Miceikien
ė
.
β
-
Lactoglobulin and
α
S1
-Casein types of four Lithuanian cattle breeds.
Tarptautin
ė
konferencija „IX Baltic Animal Breeding and Genetics
Conference”
. Latvija, Sigulda, 2003. P. 6-10.
3.
N. Pe
č
iulaitien
ė
, R. Petraškien
ė
, I. Miceikien
ė
. Associations between milk
protein genotypes and milk composition traits in the Lithuanian dairy cattle.
Tarptautin
ė
konferencija
„X
Baltic
Animal
Breeding
and
Genetics
Conference”
. Estija, Tartu, 2004. P. 86-90.
Rezium
ė
Šio darbo tikslas buvo ištirti pieno baltym
ų
genetini
ų
tip
ų
paplitim
ą
Lietuvos
pienini
ų
galvij
ų
populiacijoje ir nustatyti j
ų į
tak
ą
pieno kiekiui, kokybei bei pieno
sud
ėč
iai.
Šiam tikslui pasiekti buvo iškelti sekantys uždaviniai:
1.
Į
vertinti gen
ų
lemian
č
i
ų
pieno baltymus Alfa
s1
-kazein
ą
, Kapa-kazein
ą
ir
išr
ū
g
ų
baltym
ą
Beta-laktoglobulin
ą į
vairov
ę
keturiose Lietuvos pienini
ų
galvij
ų
veisl
ė
se: Lietuvos juodmargiai, Lietuvos žalieji, Lietuvos š
ė
mieji ir
Lietuvos baltnugariai.
2.
Nustatyti
atskirai
Alfa
s1
-kazeino, Kapa-kazeino
ir Beta-laktoglobulino
genotip
ų į
tak
ą
pieno kiekiui ir pieno sud
ė
tin
ė
ms dalims.
3.
Į
vertinti Alfa
s1
-kazeino, Kapa-kazeino ir Beta-laktoglobulino gen
ų į
tak
ą
pieno
kiekiui ir pieno sud
ė
tin
ė
ms dalims.
4.
Į
vertinti Alfa
s1
-kazeino, Kapa-kazeino haplotip
ų į
tak
ą
pieno kiekiui ir pieno
sud
ė
tin
ė
ms dalims Lietuvos pienini
ų
galvij
ų
populiacijoje.
Pagal m
ū
s
ų
gautus rezultatus, pieno baltymo Kapa-kazeino lokuso du dažniausiai
galvijuose sutinkami A ir B aleliai buvo identifikuoti gana nemažu dažniu
Lietuvos pienini
ų
galvij
ų
veisl
ė
se. Daugelis Europos pienini
ų
galvij
ų
veisli
ų
turi A
alelio didel
į
dažn
į
, ypatingai Holšteinai (Perez-Rodriguez L. et al, 1998), ta
č
iau
Europoje selekcija vykdoma B alelio atžvilgiu ir formuojamos specifin
ė
s galvij
ų
18
bandos. B aleliui skiriamas didelis d
ė
mesys
,
nes jis yra susij
ę
s su pieno perdirbimo
savybi
ų
gerinimu (Kübarsepp I., et al, 2004; Strzalkowska N. et al, 2002; Lien S.
et al, 1999; Van Eenennaam A. et al, 1991; Marzialini A.S. et al, 1986; Schaar J. et
al, 1985; McLean D.M. et al, 1984). Pageidaujamo s
ū
ri
ų
pramon
ė
je, pieno
baltymo Kapa-kazeino lokuso B alelio aukš
č
iausias dažnis buvo nustatytas
Lietuvos žal
ų
j
ų
veisl
ė
je. Aukštu dažniu Kapa-kazeino lokuso B alelis buvo
nustatytas Estijos žal
ų
j
ų
veisl
ė
je (Kubarsepp I. et al, 2004) ir Europoje Džersi
ų
veisl
ė
je (Beja-Pereira A. et al, 2002). Tuo tarpu žemiausias B alelio dažnis iš vis
ų
m
ū
s
ų
tirt
ų
veisli
ų
nustatytas Lietuvos juodmargi
ų
veisl
ė
je, taip pat žem
ą
Kapa-
kazeino lokuso B alelio dažn
į
Kubarsepp I. et al, (2004) aptiko Estijos
Holšteinuose bei Bonvillani A.G. et al, (2000) nustat
ė
Argentinos Holšteinuose.
Kapa-kazeino E alelis, kuris yra paplit
ę
s lygum
ų
galvij
ų
veisl
ė
se, tokiose kaip
Aišyrai, Holšteinai, Vokietijos žalmargiai ir kitose (Erhardt G. et al, 1997), taip pat
nedideliu dažniu buvo nustatytas ir Lietuvos pienini
ų
galvij
ų
veisl
ė
se.
Į
vertinant
pieno baltymo Kapa-kazeino skirting
ų
genotip
ų
dažnius Lietuvos juodmargi
ų
galvij
ų
veisl
ė
je, nebuvo aptiktas ir s
ū
ri
ų
pramonei svarbus Kapa-kazeino BB
genotipas, nes ši veisl
ė
, kaip ir Holšteinai, buvo selekcionuojama pieno kiekio
atžvilgiu. Pagal tyr
ė
j
ą
Bonvillani A.G. et al, (2000), Kapa-kazeino BB genotipas
neaptiktas ir Argentinos Holštein
ų
veisl
ė
s galvijuose. Lietuvos juodmargi
ų
galvij
ų
veisl
ė
je didžiausiu dažniu buvo nustatyti pieno baltymo Kapa-kazeino AA
genotipas, kuris lemia didesn
ę
pieno išeig
ą
, bei AE genotipas, pasižymintis aukšta
pieno produkcija, ta
č
iau žemu baltym
ų
procentu. Kapa-kazeino BB genotipas
didžiausiu dažniu buvo nustatytas Lietuvos baltnugari
ų
veisl
ė
je. Pieno baltymo
Kapa-kazeino B alelio ir BB genotipo identifikavimas gali b
ū
ti svarbus kriterijus
galvij
ų
selekcijoje formuojant bandas pramoninio pieno gamybai.
Analizuojant pieno baltymo Alfa
s1
-kazeino paplitim
ą
, m
ū
s
ų
atlikt
ų
tyrim
ų
rezultatai parod
ė
, kad Lietuvos pienini
ų
galvij
ų
veisl
ė
s turi tokius pat dažniausiai
sutinkamus pieno baltymo Alfa
s1
-kazeino alelius, kaip ir Europos pienini
ų
galvij
ų
veisl
ė
s. Pieno baltymo Alfa
s1
-kazeino lokuso B alelis yra žinomas kaip
dažnaiusiai pasitaikantis tarp galvij
ų
ir randamas 90–95% dažnumu (Ng-Kwai-
Hang et al, 1992). Alfa
s1
-kazeino B alelis, kuris, kaip manoma, yra susij
ę
s su
aukštesne pieno išeiga (Ng-Kwai-Hang K. F. et al, 1984), vyravo visose
analizuojamose Lietuvos pienini
ų
galvij
ų
veisl
ė
se, tuo tarpu C alelis, kuris lemia
aukštesn
į
baltym
ų
lyg
į
piene, nustatytas labai žemu dažniu visose tirtose veisl
ė
se.
Pagal Jakob E. et al, (1994), Alfa
s1
-kazeino C alelis pasižymi s
ū
ri
ų
pramonei
naudinga savybe
d
ė
l tamprios varšk
ė
s susidarymo. Pieno baltymo Alfa
s1
-
kazeino lokuso B alelis kaip vyraujantis, buvo identifikuotas ir Lenkijos, Danijos
bei Vokietijos žaluosiuose galvijuose (Erhardt G. et al, 1997). Retai sutinkami A,
D ir E Alfa
s1
-kazeino aleliai nebuvo rasti n
ė
vienoje iš studijuojam
ų
veisli
ų
, tod
ė
l
galima teigti, kad n
ė
viena Lietuvos pienini
ų
galvij
ų
veisl
ė
šiame lokuse neturi
specifini
ų
ar unikali
ų
aleli
ų
. Analizuojant pieno baltymo Alfa
s1
-kazeino skirting
ų
genotip
ų
dažnius buvo nustatyta, kad Alfa
s1
-kazeino BB genotipas m
ū
s
ų
analizuojamose Lietuvos pienini
ų
galvij
ų
veisl
ė
se buvo nustatytas aukš
č
iausiu
dažniu, šis genotipas turi teigiam
ą
į
tak
ą
pieno išeigai ir yra dažniausiai
sutinkamas pieniniuose galvijuose (Aleandri R. et al, 1989). Pieno baltymo Alfa
s1
-
  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents