Measurement of Cabibbo-suppressed {_t63 tau] lepton decays and the determination of  [V_1tnu_1tns| [Elektronische Ressource] / presented by Stefan Schenk
190 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Measurement of Cabibbo-suppressed {_t63 tau] lepton decays and the determination of [V_1tnu_1tns| [Elektronische Ressource] / presented by Stefan Schenk

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
190 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

DISSERTATIONsubmitted to theCombined Faculties for the Natural Sciences and Mathematicsof the Ruperto-Carola University of Heidelberg, Germanyfor the degree ofdoctor rerum naturaliumpresented byDipl.-Phys. Stefan Schenkborn in Wurselen, Germany¨thOral examination: July 07 , 2008Measurement ofCabibbo-suppressed τ lepton decaysand the determination of|V |usReferees: Prof. Dr. Ulrich UwerProf. Dr. Johanna StachelAbstractThis work presents simultaneous branching fraction measurements of the decay− − 0 − − 0modes τ →K nπ ν with n = 0,1,2,3 and τ →π nπ ν with n = 3,4. Theτ τ6 + −analysis is based on a data sample of 427×10 τ τ pairs recorded with the−1BABAR detector, which corresponds to an integrated luminosity of 464.4fb .− − −3 −The measured values areB(τ →K ν ) = (6.57±0.03±0.11)×10 ,B(τ →τ− 0 −3 − − 0 0K π ν ) = (4.61±0.03±0.11)×10 , B(τ → K π π ν ) = (5.05±0.17±τ τ−4 − − 0 0 0 −4 −0.44)×10 , B(τ → K π π π ν ) = (1.31±0.43±0.40)×10 , B(τ →τ− 0 0 0 −2 − − 0 0 0 0π π π π ν ) = (1.263±0.008±0.078)×10 and B(τ → π π π π π ν ) =τ τ−4(9.6±0.5±1.2)×10 , where the uncertainties are statistical and systematic,respectively. All measurements are compatible with the current world averageswhereas the uncertainties are significantly smaller by a factor of up to five.− − 0 0 0 0The determination of B(τ → π π π π π ν ) is the first measurement of thisτbranching fraction. The measured branching fractions are combined with thecurrentworldaverages.

Sujets

Informations

Publié par
Publié le 01 janvier 2008
Nombre de lectures 13
Langue English
Poids de l'ouvrage 7 Mo

Extrait

DISSERTATION
submitted to the
Combined Faculties for the Natural Sciences and Mathematics
of the Ruperto-Carola University of Heidelberg, Germany
for the degree of
doctor rerum naturalium
presented by
Dipl.-Phys. Stefan Schenk
born in Wurselen, Germany¨
thOral examination: July 07 , 2008Measurement of
Cabibbo-suppressed τ lepton decays
and the determination of|V |us
Referees: Prof. Dr. Ulrich Uwer
Prof. Dr. Johanna StachelAbstract
This work presents simultaneous branching fraction measurements of the decay
− − 0 − − 0modes τ →K nπ ν with n = 0,1,2,3 and τ →π nπ ν with n = 3,4. Theτ τ
6 + −analysis is based on a data sample of 427×10 τ τ pairs recorded with the
−1BABAR detector, which corresponds to an integrated luminosity of 464.4fb .
− − −3 −The measured values areB(τ →K ν ) = (6.57±0.03±0.11)×10 ,B(τ →τ
− 0 −3 − − 0 0K π ν ) = (4.61±0.03±0.11)×10 , B(τ → K π π ν ) = (5.05±0.17±τ τ
−4 − − 0 0 0 −4 −0.44)×10 , B(τ → K π π π ν ) = (1.31±0.43±0.40)×10 , B(τ →τ
− 0 0 0 −2 − − 0 0 0 0π π π π ν ) = (1.263±0.008±0.078)×10 and B(τ → π π π π π ν ) =τ τ
−4(9.6±0.5±1.2)×10 , where the uncertainties are statistical and systematic,
respectively. All measurements are compatible with the current world averages
whereas the uncertainties are significantly smaller by a factor of up to five.
− − 0 0 0 0The determination of B(τ → π π π π π ν ) is the first measurement of thisτ
branching fraction. The measured branching fractions are combined with the
currentworldaverages. Usingthenewaverages, anupdateddeterminationof|V |us
from hadronic τ decays yields|V | = 0.2146±0.0025, which improves previousus
measurements by 19%. Its uncertainty is comparable to the one of the current
world average from semileptonic kaon decays.
Kurzfassung
In der vorliegenden Arbeit werden die Verzweigungsverhaltniss¨ e der Zerf¨alle
− − 0 − − 0τ → K nπ ν mit n = 0,1,2,3 und τ → π nπ ν mit n = 3,4τ τ
6 + −gemessen. Der verwendete Datensatz von 427×10 τ τ -Paaren wurde mit
dem BABAR-Detektor aufgezeichnet und entspricht einer integrierten Luminositat¨
−1 − −von 464.4fb . Die gemessenen Verzweigungsverh¨altnisse sindB(τ →K ν ) =τ
−3 − − 0 −3(6.57±0.03±0.11)×10 , B(τ → K π ν ) = (4.61±0.03±0.11)×10 ,τ
− − 0 0 −4 − − 0 0 0B(τ → K π π ν ) = (5.05±0.17±0.44)×10 , B(τ → K π π π ν ) =τ τ
−4 − − 0 0 0 −2(1.31±0.43±0.40)×10 ,B(τ →π π π π ν ) = (1.263±0.008±0.078)×10τ
− − 0 0 0 0 −4undB(τ →π π π π π ν ) = (9.6±0.5±1.2)×10 , wobei die ersten Unsicher-τ
heiten statistischer und die zweiten systematischer Natur sind. Alle Messungen
sind mit den aktuellen Weltmittelwerten kompatibel, wobei die Unsicherheiten um
− − 0 0 0 0biszueinenFaktorfun¨ fkleinersind. DieBestimmungvonB(τ →π π π π π ν )τ
ist die erste Messung dieses Verzweigungsverhaltnisses. Die gemessenen Verzwei-¨
gungsverhaltnisse¨ werden mit den aktuellen Weltmittelwerten kombiniert. Eine
aktualisierte Bestimmung von|V | aus hadronischen τ-Zerfallen¨ unter Verwen-us
dung der neuen Mittelwerte ergibt |V | = 0.2146± 0.0025. Dies stellt eineus
Verbesserung bisheriger Messungen um 19% dar. Die Unsicherheit ist mit der
des aktuellen Weltmittelwertes aus semileptonischen Kaonzerfallen vergleichbar.¨Contents
Introduction 2
1 Theoretical background and experimental status 3
1.1 The Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.1 The electroweak interaction . . . . . . . . . . . . . . . . . . . . 5
1.1.2 Properties of the quark mixing matrix . . . . . . . . . . . . . . 7
1.1.3 The strong interaction . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Experimental status of hadronic τ decays . . . . . . . . . . . . . . . . . 9
1.2.1 Branching fractions of leptonic τ decays . . . . . . . . . . . . . 10
1.2.2 Branching fractions of hadronic τ decays . . . . . . . . . . . . . 11
1.2.3 Hadronic decay rate of the τ lepton . . . . . . . . . . . . . . . . 13
1.2.4 Spectral functions of hadronic τ decays . . . . . . . . . . . . . . 13
1.3 Hadronic τ decays and QCD . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.1 Hadronic decay rate of the τ lepton . . . . . . . . . . . . . . . . 15
1.3.2 Spectral moments of hadronic τ decays . . . . . . . . . . . . . . 18
1.4 Determination of|V | . . . . . . . . . . . . . . . . . . . . . . . . . . . 19us
1.4.1 Semileptonic kaon decays . . . . . . . . . . . . . . . . . . . . . . 19
1.4.2 Hadronic τ decays . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.4.3 Summary of current|V | results. . . . . . . . . . . . . . . . . . 24us
2 The BABAR experiment 27
2.1 The PEP-II collider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 The BABAR detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.1 The silicon vertex tracker . . . . . . . . . . . . . . . . . . . . . 28
2.2.2 The drift chamber . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.3 The Cherenkov detector . . . . . . . . . . . . . . . . . . . . . . 31
2.2.4 The electromagnetic calorimeter . . . . . . . . . . . . . . . . . . 32
2.2.5 The instrumented flux return . . . . . . . . . . . . . . . . . . . 33
2.3 Data and Monte Carlo simulated event samples . . . . . . . . . . . . . 34
2.3.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3.2 Monte Carlo simulation . . . . . . . . . . . . . . . . . . . . . . 35
3 Particle reconstruction and identification 39
3.1 Charged particle reconstruction . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Neutral particle reconstruction . . . . . . . . . . . . . . . . . . . . . . . 40
3.3 Charged particle identification . . . . . . . . . . . . . . . . . . . . . . . 41
iii CONTENTS
3.3.1 Measured quantities . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.2 Particle identification criteria . . . . . . . . . . . . . . . . . . . 43
3.4 Neutral pion identification . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4.1 Photon selection . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4.2 Neutral pion selection . . . . . . . . . . . . . . . . . . . . . . . 49
3.5 Efficiency corrections for simulated events . . . . . . . . . . . . . . . . 50
3.5.1 Tracking efficiency correction . . . . . . . . . . . . . . . . . . . 51
3.5.2 Charged particle identification efficiency correction . . . . . . . 51
4 Event selection 53
+ − + −4.1 Selection of e e →τ τ reactions . . . . . . . . . . . . . . . . . . . . 55
− − − 04.2 Selection of τ →π /K nπ ν decays . . . . . . . . . . . . . . . . . . 58τ
4.2.1 Identification of charged pions and kaons . . . . . . . . . . . . . 59
− − − 04.2.2 Separation into the decay modes τ →π /K nπ ν . . . . . . 60τ
4.3 Graphical display of simulated distributions . . . . . . . . . . . . . . . 60
4.4 Cross feed rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.5 Rejection of remaining QED backgrounds . . . . . . . . . . . . . . . . . 64
4.6 of qq background . . . . . . . . . . . . . . . . . . . 67
4.7 Rejection of remaining ττ background . . . . . . . . . . . . . . . . . . 68
4.8 Summary of the selection criteria . . . . . . . . . . . . . . . . . . . . . 72
05 Systematics of the π selection 79
05.1 Determination of the π efficiency correction . . . . . . . . . . . . . . . 80
5.1.1 Description of the data by the Monte Carlo simulation . . . . . 83
05.1.2 The π efficiency correction . . . . . . . . . . . . . . . . . . . . 84
05.2 Application of the π efficiency correction. . . . . . . . . . . . . . . . . 85
5.2.1 Combinatorial photon pairs . . . . . . . . . . . . . . . . . . . . 86
5.3 Systematic studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
05.3.1 Precision of the π efficiency correction . . . . . . . . . . . . . . 88
5.3.2 Split-offs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
05.3.3 Merged π mesons . . . . . . . . . . . . . . . . . . . . . . . . . 96
05.4 Systematic uncertainty of the π efficiency correction . . . . . . . . . . 98
− − 0 05.5 Kinematics of τ →π π π ν decays . . . . . . . . . . . . . . . . . . . 100τ
5.6 Critical discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6 Extraction of the branching fractions 103
6.1 Calculation of branching fractions . . . . . . . . . . . . . . . . . . . . . 104
6.2 Determination of the event migration . . . . . . . . . . . . . . . . . . . 106
6.3 Measurement of the branching fractions . . . . . . . . . . . . . . . . . . 108
6.4 Statistical uncertainties and their correlations . . . . . . . . . . . . . . 111
6.5 Systematic uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . 114
+ − + −6.5.1 ττ production cross section σ(e e →τ τ ) . . . . . . . . . . . 115
6.5.2 Luminosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.5.3 Background normalization . . . . . . . . . . . . . . . . . . . . . 116
6.5.4 Tracking efficiency . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.5.5 Charged particle identification efficiency . . . . . . . . . . . . . 118CONTENTS iii
6.5.6 Signal selection efficiencies . . . . . . . . . . . . . . . . . . . . . 119
6.5.7 Background misidentification probabilities . . . . . . . . . . . . 121
06.5.8 π efficiency correction . . . . . . . . . . . .

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents