Measuring the impact of apnea and obesity on circadian activity patterns using functional linear modeling of actigraphy data
10 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Measuring the impact of apnea and obesity on circadian activity patterns using functional linear modeling of actigraphy data

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
10 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

Actigraphy provides a way to objectively measure activity in human subjects. This paper describes a novel family of statistical methods that can be used to analyze this data in a more comprehensive way. Methods A statistical method for testing differences in activity patterns measured by actigraphy across subgroups using functional data analysis is described. For illustration this method is used to statistically assess the impact of apnea-hypopnea index (apnea) and body mass index (BMI) on circadian activity patterns measured using actigraphy in 395 participants from 18 to 80 years old, referred to the Washington University Sleep Medicine Center for general sleep medicine care. Mathematical descriptions of the methods and results from their application to real data are presented. Results Activity patterns were recorded by an Actical device (Philips Respironics Inc.) every minute for at least seven days. Functional linear modeling was used to detect the association between circadian activity patterns and apnea and BMI. Results indicate that participants in high apnea group have statistically lower activity during the day, and that BMI in our study population does not significantly impact circadian patterns. Conclusions Compared with analysis using summary measures (e.g., average activity over 24 hours, total sleep time), Functional Data Analysis (FDA) is a novel statistical framework that more efficiently analyzes information from actigraphy data. FDA has the potential to reposition the focus of actigraphy data from general sleep assessment to rigorous analyses of circadian activity rhythms.

Sujets

Informations

Publié par
Publié le 01 janvier 2011
Nombre de lectures 11
Langue English

Extrait

Wang
etal
.
JournalofCircadianRhythms
2011,
9
:11
http://www.jcircadianrhythms.com/content/9/1/11

RESEARCH

OpenAccess

Measuringtheimpactofapneaandobesityon
circadianactivitypatternsusingfunctionallinear
modelingofactigraphydata
JiaWang
1
,HongXian
1,2
,AmyLicis
3
,ElenaDeych
1
,JiminDing
4
,JenniferMcLeland
3
,CristinaToedebusch
3
,TaoLi
1
,
StephenDuntley
3
andWilliamShannon
1*

Abstract
Background:
Actigraphyprovidesawaytoobjectivelymeasureactivityinhumansubjects.Thispaperdescribesa
novelfamilyofstatisticalmethodsthatcanbeusedtoanalyzethisdatainamorecomprehensiveway.
Methods:
Astatisticalmethodfortestingdifferencesinactivitypatternsmeasuredbyactigraphyacrosssubgroups
usingfunctionaldataanalysisisdescribed.Forillustrationthismethodisusedtostatisticallyassesstheimpactof
apnea-hypopneaindex(apnea)andbodymassindex(BMI)oncircadianactivitypatternsmeasuredusing
actigraphyin395participantsfrom18to80yearsold,referredtotheWashingtonUniversitySleepMedicine
Centerforgeneralsleepmedicinecare.Mathematicaldescriptionsofthemethodsandresultsfromtheir
applicationtorealdataarepresented.
Results:
ActivitypatternswererecordedbyanActicaldevice(PhilipsRespironicsInc.)everyminuteforatleast
sevendays.Functionallinearmodelingwasusedtodetecttheassociationbetweencircadianactivitypatternsand
apneaandBMI.Resultsindicatethatparticipantsinhighapneagrouphavestatisticallyloweractivityduringthe
day,andthatBMIinourstudypopulationdoesnotsignificantlyimpactcircadianpatterns.
Conclusions:
Comparedwithanalysisusingsummarymeasures(e.g.,averageactivityover24hours,totalsleep
time),FunctionalDataAnalysis(FDA)isanovelstatisticalframeworkthatmoreefficientlyanalyzesinformationfrom
actigraphydata.FDAhasthepotentialtorepositionthefocusofactigraphydatafromgeneralsleepassessmentto
rigorousanalysesofcircadianactivityrhythms.
Keywords:
Apnea,BMI,circadianactivitypatterns,FunctionalDataAnalysis

1.Introduction
todaytimeactivityortotalactivity,[7,8]standarddevia-
Activitymeasuredbywristactigraphyhasbeenshowntionofsleeponsettime,[9]andintra-dailyvariability
tobeavalidmarkerofentrainedPolysomnography[10].Morecomplexmodelingofactigraphyincludes
(PSG)sleepphaseandisstronglycorrelatedwithspectralanalysis,[7]cosinoranalysis[7]andwaveform
entrainedendogenouscircadianphase[1].Actigraphyeductioncalculatedasan

averagewaveform

forsome
dataisrecordeddensely,suchaseveryminuteoreveryperiod[11].
15seconds,foreachpatientovermultipledays.ThisInthispaperweproposeanovelstatisticalframework,
dataisgenerallyanalyzedbyreducingthetimeseriesFunctionalLinearModeling(FLM),asubsetofFunc-
activityvaluestosummarystatisticssuchassleep/waketionalDataAnalysis(FDA),foranalyzingactigraphy
ratios,[2,3]totalsleeptime,[2,4]sleepefficiency,[5,6]datatoextractandanalyzecircadianactivityinforma-
wakeaftersleeponset,[2,3,6]ratioofnighttimeactivitytionthroughdirectanalysisofrawactivityvalues[12].
FLMextendsstandardlinearregressiontotheanalysis
*Correspondence:wshannon@wustl.edu
offunctions,whichinthiscaserepresentcircadian
1
Dept.ofMedicine,WashingtonUniversitySchoolofMedicine,(660South
activitypatterns.FLMisperformedby1)convertinga
EuclidAvenue),St.Louis,(63110),USA
subject

srawactigraphydatatoafunctionalform(i.e.,
Fulllistofauthorinformationisavailableattheendofthearticle
©2011Wangetal;licenseeBioMedCentralLtd.ThisisanOpenAccessarticledistributedunderthetermsoftheCreativeCommons
AttributionLicense(http://creativecommons.org/licenses/by/2.0),whichpermitsunrestricteduse,distribution,andreproductionin
anymedium,providedtheoriginalworkisproperlycited.

Wang
etal
.
JournalofCircadianRhythms
2011,
9
:11
http://www.jcircadianrhythms.com/content/9/1/11

continuouscurveovertime),and2)analyzingsetsof
functionstoseeiftheydifferstatisticallyacrossgroups.
OurFLM-basedanalysisshowswhereandwithwhat
levelthedifferencebetweengroupsoccursalongthe
time,whichprovidesvaluablereferenceforclinicalana-
lysisandtreatments,anddistinguishesourmethods
fromexistingcircadiananalysisworks(see[13]fora
review).Moreover,weadoptedanon-parametricper-
mutationFtesttodetectthedifferencebetweengroups,
whichmakestheresultsrobusttotheuncertaintyin
rawdatadistribution.UsingFLM,weshowthatthe
apnea-hypopneaindex(apnea)hasastatisticallysignifi-
cantimpactoncircadianactivitypatterns,whilebody
massindex(BMI)inthisdatasethaslittleimpact.
2.Methods
2.1ParticipantsandMeasures
Participantswererecruitedprospectivelyfromtheclinic
atWashingtonUniversityinSt.LouisSleepMedicine
Center.Thesleepcenterisamultidisciplinaryclinicata
tertiarymedicalfacility.Clinicpatientswithasuspected
diagnosisofobstructivesleepapnea(OSA),insomnia,or
restlesslegssyndrome(RLS)wereinvitedtoparticipate.
Pregnantwomen,individualsunderageof18,and
patientswhoreportworkinganeveningorovernight
shiftwereexcludedfromparticipationduetoknown
biologicallydifferentcircadianclocks.Clinicalcovariates
suchasBMI,co-morbidities,concomitantmedications,
andpresentingsleepcomplaintswerecollected.Partici-
pantsunderwentanovernightPSGwhenclinicallyindi-
cated.Thesedatawerecollectedinaccordancewiththe
standardsoftheAmericanAcademyofSleepMedicine
(AASM)andwerereviewedbyaboardcertifiedsleep
physician.PSGdatawerescoredaccordingtothe
AASMManualfortheScoringofSleepandAssociated
Events.Thisongoingstudyhasbeenapprovedbythe
WashingtonUniversitySchoolofMedicineInstitutional
ReviewBoard.
ActivitywasmeasuredusingActicaldevices(Philips
RespironicsInc.)whichwerepositionedonthenon-domi-
nantwristofsubjectsattheinitialsleepcentervisitand
settomeasureactivityeveryminutefor7days.Three
hundredandninetyfivepatientshavebeenrecruited,of
which305haveapneaand/orBMImeasured.Thissub-
groupcomesfromalargerNIHfundedstudycurrently
recruitingacrosssectionof750patientsreferredtothe
WashingtonUniversitySleepMedicineCenterforthepur-
poseofdevelopingandvalidatingfunctionaldataanalysis
methodsforactigraphydata(HL092347).
2.2.FunctionalDataAnalysis(FDA)
FDAisanemergingfieldinstatisticsthatextendsclassi-
calstatisticalmethodsforanalyzingsetsofnumbers
(scalarsforunivariateanalyses,andvectorsfor

Page2of10

multivariateanalyses)toanalyzingsetsoffunctions[13]
[15].FDAisasubsetofthelargerfieldcalled

object
dataanalysis

or

objectorienteddataanalysis

thatuses
statisticalmethodstoanalyzedatathatareinnon-
numericformsuchasimages,graphs(e.g.,trees),or
functions[14,15].Thegoalofobjectorienteddataana-
lysisistoanalyzeobjectsintheirnaturalform(e.g.,
functions,graphs)toextractmoreinformationthan
generallycanbeextractedwhentheobjectsarecon-
vertedintosimplersummarymeasures(e.g.,average
activitylevel,totalsleeptime)wherestandardstatistical
methodscanbeapplied.
2.2.1Functionalsmoothing
Functionaldataanalysis(FDA)beginsbyreplacingdis-
creteactivityvaluesmeasuredateachtimeunit(e.g.,
minute)byafunctiontomodelthedataandreduce
variability.Thefunctionrepresentstheexpectedactivity
valueateachtimepointmeasured.Sincetheactigraphy
hasequidistantdata,toallowflexibilityinrepresenting
thedataasafunction,aFourierexpansionmodelis
used,thoughanysmoothingmethodcouldbeused.Let
y
kj
bethediscreteactivitycountforpatientkattime
point
t
kj
,thenthemodel
y
kj
=
Activity
k
(
t
kj
)+
ε
k
(
t
kj
)
(1)
representsactivity,where
k
=1,2,...
,N
,
N
istotalnum-
berofpatients,
j
=1,2,...,
T
k
,
T
k
isthetotalnumberof
timepointsforpatient
k
.Inourdataset,observation
timesareminutesfrommidnighttomidnightin24
hours,soallsubjectshavethesamenumberofmeasure-
ments
T
k
.
Weconverttherawactigraphydatatoafunctional
formusingabasisfunctionexpansionfor
Activity
k
(
t
j
)
Activity
k
(
t
j
)=
a
1
k

1
(
t
j
)+
a
2
k

2
(
t
j
)
2()+
···
+
a
nk

n
(
t
j
)
where
{
a
ik
}
in
=1
arescalarcoefficientsforpatientkand
{

i
(
·
)
}
in
=1
arebasisfunctions.Possiblebasisfunctions
includepolynomials(
f
(
t
)=
a
1
t
+
a
2
t
2
+...+
a
n
t
n
),Four-
(
f
(
t
)=
a
1
+
a
2
sin(
ω
t
)+
a
3
cos(
ω
t
)+
ierbasis,splines,
a
4
sin(2
ω
t
)+
a
5
cos(2
ω
t
)+
···
+
a
n
ϕ
n
)
andwavelets.
Experimentalresults(unpublished)showmostbasis
functionsworkequallywellandwehavefoundaFour-
ierexpansionwithn=9basisfunctionscapturethe
majortrendofactivitypatternwithreducednoise.Let

1
(
t
)=1,

2
(
t
)=cos(
ω
t
),

3

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents