Metal based asymmetric catalysis in Baeyer-Villiger oxidations [Elektronische Ressource] / vorgelegt von Chiara Palazzi
163 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Metal based asymmetric catalysis in Baeyer-Villiger oxidations [Elektronische Ressource] / vorgelegt von Chiara Palazzi

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
163 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

Metal-based asymmetric catalysis in Baeyer-Villiger oxidationsVon der Fakultät für Mathematik, Informatik und Naturwissenschaften der Rheinisch-Westfälischen Technischen Hochschule Aachen zur Erlangung des akademischen Gradeseiner Doktorin der Naturwissenschaften genehmigte Dissertationvorgelegt vonDiplom-ChemikerinChiara Palazziaus VenedigBerichter: Universitätsprofessor Dr. C. BolmUniversitätsprofessor Dr. W. LeitnerTag der mündlichen Prüfung: 19. September 2002Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar.The present dissertation was realized from October 1999 until June 2002 at the Institute forOrganic Chemistry of the RWTH Aachen University under the supervision of Professor Dr.Carsten Bolm.I wish to thank Professor Dr. Carsten Bolm for the opportunity to work in his group, hisinterest, enthusiasm and support. I would also like to thank Professor Dr. Walter Leitner forgiving me the possibility to work in the field of compressed carbon dioxide at the Max-Planck-Institut für Kohlenforschung. Furthermore, I am grateful to Professor Dr. WalterLeitner for accepting the post of second examiner (Korreferent).Parts of this thesis are already published:“Chiral aluminum complexes as catalysts in asymmetric Baeyer-Villiger reactions ofcyclobutanones“C. Bolm, O. Beckmann, C. Palazzi, Can. J. Chem. 2001, 79, 1593.“Enantioselective Baeyer-Villiger oxidations catalyzed by chiral magnesium complexes”C. Bolm, O.

Informations

Publié par
Publié le 01 janvier 2002
Nombre de lectures 13
Langue English

Extrait

Metal-based asymmetric catalysis in Baeyer-Villiger oxidations
Von der Fakultät für Mathematik, Informatik und Naturwissenschaften der Rheinisch-
Westfälischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades
einer Doktorin der Naturwissenschaften genehmigte Dissertation
vorgelegt von
Diplom-Chemikerin
Chiara Palazzi
aus Venedig
Berichter: Universitätsprofessor Dr. C. Bolm
Universitätsprofessor Dr. W. Leitner
Tag der mündlichen Prüfung: 19. September 2002
Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar.The present dissertation was realized from October 1999 until June 2002 at the Institute for
Organic Chemistry of the RWTH Aachen University under the supervision of Professor Dr.
Carsten Bolm.
I wish to thank Professor Dr. Carsten Bolm for the opportunity to work in his group, his
interest, enthusiasm and support. I would also like to thank Professor Dr. Walter Leitner for
giving me the possibility to work in the field of compressed carbon dioxide at the Max-
Planck-Institut für Kohlenforschung. Furthermore, I am grateful to Professor Dr. Walter
Leitner for accepting the post of second examiner (Korreferent).
Parts of this thesis are already published:
“Chiral aluminum complexes as catalysts in asymmetric Baeyer-Villiger reactions of
cyclobutanones“
C. Bolm, O. Beckmann, C. Palazzi, Can. J. Chem. 2001, 79, 1593.
“Enantioselective Baeyer-Villiger oxidations catalyzed by chiral magnesium complexes”
C. Bolm, O. Beckmann, A. Cosp, C. Palazzi, Synlett 2001, 9, 1461.
“Influence of hydroperoxides on the enantioselectivity of metal-catalyzed asymmetric Baeyer-
Villiger oxidations and epoxidations with chiral ligands“
C. Bolm, O. Beckmann, T. Kühn, C. Palazzi, W. Adam, P. B. Rao, C. R. Saha-Möller,
Tetrahedron: Asymmetry 2001, 12, 2441.
“Baeyer-Villiger oxidation in compressed CO ”2
C. Bolm, C. Palazzi, G. Franciò, W. Leitner, Chem.Commun. 2002, 158.Index
INDEX
1 Introduction 1
1.1 General introduction 1
1.2 -Butyrolactones: challenging targets in organic synthesis 5
1.3 General mechanistic aspects of the Baeyer-Villiger rearrangement 7
1.4 Non-enzymatic asymmetric Baeyer-Villiger reactions 9
2 Research objective 18
3 Results and discussion 19
3.1 Synthesis of the substrates 19
3.2 Chiral aluminium complexes 21
3.2.1 Chiral aluminium complexes in asymmetric catalysis 21
3.2.2 New generation of aluminium catalysts: bifunctional catalysts 24
3.3 Aluminium-mediated asymmetric Baeyer-Villiger oxidation 27
3.3.1 Influence of the substitution pattern 30
3.3.2 Aluminium-mediated Baeyer-Villiger oxidation with steroidal ligands 36
3.3.3 Modification of the system and structure of the complex 42
3.3.4 Influence of temperature 47
3.3.5 Other ligands 48
3.3.6 Influence of the hydroperoxide 50
3.3.7 Alternative oxidants 55
3.4 Asymmetric Baeyer-Villiger oxidation with chiral magnesium complexes 57
3.5 Baeyer-Villiger oxidation promoted by chiral ytterbium complexes 68
3.6 Tin-catalyzed asymmetric Baeyer-Villiger oxidation 72
3.7 Attempts towards an asymmetric Baeyer-Villiger with H O 762 2
3.7.1 Transition metal-based Lewis acid catalysts 76
3.7.2 Iron as metal centre 79
3.7.3 Asymmetric Baeyer-Villiger oxidation without metals 84
3.8 Supercritical fluids 87
3.8.1 Applications of supercritical carbon dioxide 89
3.8.2 Oxidation reactions in supercritical carbon dioxide 90
3.8.3 Aerobic oxidation in supercritical carbon dioxide 92
3.8.4 Baeyer-Villiger oxidation in compressed CO 942
gIndex
4 Summary 106
5 Experimental section 109
5.1 General methods and chemicals 109
5.1.1 Inert atmosphere conditions 109
5.1.2 Solvents 109
5.1.3 Determination of the physical data 110
5.2 Synthesis of the substrates 113
5.2.1 Synthesis of monosubstituted, prochiral and bicyclic, racemic cyclobutanones113
49c,d5.2.1.1 rac-2,2-Dichloro-3-phenylcyclobutanone (rac-248) 114
,5.2.1.2 3-Phenylcyclobutanone (32) 114
38f5.2.1.3 rac-2,2-Dichloro-3-(4 -Chlorophenyl)-cyclobutanone (rac -249) 115
38f5.2.1.4 3-(4 -Chlorophenyl)-cyclobutanone (164) 115
1915.2.1.5 rac-2,2-Dichloro-3-(3 -4 -piperonyl)-cyclobutanone (rac-250) 116
5.2.1.6 3-(3 -4 -Piperonyl)-cyclobutanone (90) 116
1925.2.1.7 rac-2,2-Dichloro-3-(4 -methoxy-benzyl)-cyclobutanone (rac -251) 117
5.2.1.8 3-(4 -methoxy-benzyl)-cyclobutanone (88) 117
5.2.1.9 rac-2,2-Dichloro-3-benzylcyclobutanone (rac-252) 118
5.2.1.10 3-Benzylcyclobutanone (166) 118
49a5.2.1.11 rac-cis-8,8-Dichlorobicyclo[4.2.0]octan-7-one (rac-253) 119
49a5.2.1.12 rac-cis-Bicyclo[4.2.0]octan-7-one (rac-24) 119
5.2.2 Synthesis of racemic 2-alkyl cyclic ketones 120
505.2.2.1 Cyclopentanone N,N-dimethylhydrazone (51) 120
505.2.2.2 2-n-Pentylcyclopentanone (29) 121
515.2.3 rac-2-phenyl cyclobutanone (57) 121
5.3 General protocol 3 (GP3): Racemic lactones obtained by Baeyer-Villiger
oxidation with MCPBA 122
1905.3.1 rac-4-Phenyltetrahydro-2-furanone (rac-33) 123
1915.3.2 4-(3 ,4 -piperonyl)-tetrahydro-2-furanone (rac-91) 123
1925.3.3 3-(4 -methoxy-benzyl)- tetrahydro-2-furanone (rac-89) 124
5.3.4 rac-4-(4 -Chlorophenyl)-dihydrofuran-2-one (rac-254) 125
5.3.5 rac-4-Benzyldihydrofuran-2-one (rac-239) 125
50,5.3.6 6-Pentyl-tetrahydro-pyran-2-one (30) 126
5.3.7 rac-3-(phenyl)-dihydrofuran-2-one (rac-92) 127
¢¢¢¢¢¢¢¢¢¢¢¢Index
5.4 Synthesis of the ligands 128
5.4.1 Synthesis of BINOL-derivatives 128
5.4.1.1 Resolution of rac-2,2 -dihydroxy-1,1 -dinaphthyl (rac-37) 128
5.4.1.2 (S)-6,6 -Dibromo-2,2 -dinaphthyl ((S)-97) 128
5.4.1.3 (S)-6,6 -Di(trimethylsilylacetylene)-2,2 -dihydroxy-1,1 -dinaphthyl ((S)-99) 129
5.4.1.4 (R)-2,2 -Dimethoxy-1,1 -dinaphthyl ((R)-255) 130
1945.4.1.5 (S)-6,6’-Dibromo-2,2 -dimethoxy-1,1 -dinaphthyl ((S)-256) 131
5.4.1.6 (R)-3,3 -Bis(dihydroxyborane)-2,2 -dimethoxy-1,1 -dinaphthyl ((R)-257) 131
2025.4.2 General protocol for the Suzuki cross-coupling reaction (GP4). 132
5.4.2.1 (R)-3,3 -Bis(methyl)-2,2 -dihydroxy-1,1 -dinaphthyl ((R)-93) 133
2025.4.2.2 (R)-3,3 -Bis(phenyl)-2,2R)-69) 133
2025.4.2.3 (R)-3,3 -Bis(diphenyl)-2,2 -dihydroxy-1,1 -dinaphthyl ((R)-94) 134
2025.4.2.4 (R)-3,3 -Bis(2-naphthyl)-2,2R)-95) 135
5.4.2.5 (S)-6,6 -Bis(ferrocene)-2,2 -methoxy-1,1 -dinaphthyl ((R)-258). 135
5.4.2.6 (S)-6,6 -hydroxy-1,1R)-98). 136
5.4.3 Synthesis of (S)-4,4 ,6,6 -Tetrabromo-2,2 -hydroxy-1,1 -binaphthyl 137
745.4.3.1 (S)-2,2 -Hexyloxy-1,1 -binaphthyl ((S)-259) 137
745.4.3.2 (S)-4,4 ,6,6 -Tetrabromo-2,2 -hexyloxy-1,1 -binaphthyl ((S)-260) 137
745.4.3.3 (S)-4,4 ,6,6 -hydroxy-1,1S)-104) 138
5.4.4 Synthesis of (R)-(2)-7,7 -Dibromo-2,2 -dihydroxy-1,1 -binaphthyl 139
735.4.4.1 7-Bromo-2-hydroxynaphthalene (101) 139
735.4.4.2 (±)-7,7 -Dibromo-2,2 -dihydroxy-1,1 -binaphthyl (102) 139
735.4.4.3 Resolution of (±)-7,7 -dibromo-2,2 -dihydroxy-1,1 -binaphthyl (103) 140
735.4.4.4 (R)-(2)-7,7 -Dibromo-2,2 -dihydroxy-1,1 -binaphthyl ((R)-102) 141
5.4.5 (S)-4,4-dibromo-4,5-dihydro-3H-dinaphtho[2,1-c:1 ,2 -e]stannepin 142
5.4.5.1 (S)- 2,2 - Dimethyl-1,1 -binaphthyl ((S)-178). 142
133a5.4.5.2 (S)- 2,2 - dibromomethyl-1,1 -binaphthyl ((S)-179) 143
1335.4.5.3 (SH-dinaphtho[2,1-c:1 ,2 -e]stannepin (176) 143
5.4.6 Synthesis of (S)-N,N-dimethyl-N,N-bis(2-pyridylmethyl)-1,1 -binaphthyl 144
5.4.6.1 (R)-2,2 -Bis(ethoxycarbonylamino)-1,1 -binaphthyl ((R)-261) 144
2055.4.6.2 (R)-2,2 -Bis(methylamino)1,1 -binaphthyl ((R)-201) 145
5.4.6.3 (S)-N,N-dimethyl-N,N-bis(2-pyridylmethyl)-1,1 -binaphthyl (202) 146
5.4.7 (R)-N,N-Bis-pyridin-2-ylmethylene-1,1’binaphthalenyl-2,2’-diamine ((R)-200)147
¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢¢Index
5.4.8 (R)-3-[(Pyridin-2-ylmethylimino-methyl]-1,1’-binaphthalenyl-2-ol ((R)-199) 147
5.4.9 (R)-3-[(1-Hydroxymethyl-3,3-dimethyl-butylimino)-methyl]-
[1,1']binaphthalenyl-2-ol (5R)-197) 148
1175.4.10 (1R,2R)-( )-cyclohexane-(p-methyl)sulfonamide (1R,2R)-163) 149
1395.5 [CyRu((S)-tolyl-BINAP)]SbF (182) 1506
5.6 General procedure for catalytic Baeyer-Villger oxidations with aluminium (GP5)
151
5.7 General procedure for the Baeyer-Villiger oxidation in scCO (GP6) 1512
5.8 In situ IR experiments 152
6 Index of abbreviations 153
7 Publications 155
8 Curriculum Vitae 157
-Introduction 1
1 Introduction
1.1 General introduction
“In the field of observation, chance favours only the prepared mind“
Louis Pasteur
It was the year 1848 when Pasteur began to study a salt of racemic acid, a substance deposited
on the wine casks during fermentation (the name racemic derived from the Latin, racemus, a
bunch of grapes). It was known at that time that certain natural substances such as quartz
crystals, turpentine and solution of sugars could also twist polarized light, but no one
understood how that occurred. It was, however, left to the genious of Pasteur to extend this
correlation from the realm of crystals to the re

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents