New proofs of Schur-concavity for a class of symmetric functions
4 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

New proofs of Schur-concavity for a class of symmetric functions

-

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
4 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

By properties of the Schur-convex function, Schur-concavity for a class of symmetric functions is simply proved uniform. 2000 Mathematics Subject Classification : Primary 26D15; 05E05; 26B25. By properties of the Schur-convex function, Schur-concavity for a class of symmetric functions is simply proved uniform. 2000 Mathematics Subject Classification : Primary 26D15; 05E05; 26B25.

Sujets

Informations

Publié par
Publié le 01 janvier 2012
Nombre de lectures 6
Langue English

Extrait

Shiet al.Journal of Inequalities and Applications2012,2012:12 http://www.journalofinequalitiesandapplications.com/content/2012/1/12
R E S E A R C HOpen Access New proofs of Schurconcavity for a class of symmetric functions * HuanNan Shi , Jian Zhang and Chun Gu
* Correspondence: shihuannan@yahoo.com.cn Department of Electronic Information, Teachers College, Beijing Union University, Beijing 100011, P.R. China
Abstract By properties of the Schurconvex function, Schurconcavity for a class of symmetric functions is simply proved uniform. 2000 Mathematics Subject Classification: Primary 26D15; 05E05; 26B25. Keywords:majorization, Schurconcavity, inequality, symmetric functions, concave functions
1. Introduction Throughout the article,denotes the set of real numbers,x= (x1, x2, ...,xn) denotes ntuple (ndimensional real vectors), the set of vectors can be written as n R={x= (x1, ...,xn) :xiR,i...,= 1,n}, n R={x= (x1, ...,xn) :xi>0,i...,= 1,n}. + 1 1 In particular, the notteandRspectively. ationsand+deno+re For convenience, we introduce some definitions as follows. n Definition 1. [1,2] Letx =(x1, ..., xn) andy =(y1, ..., yn)Î.
(i)xymeansxiyifor alli= 1, 2,..., n. n (ii) LetΩ,:Ω®is said to be increasing ifxyimplies(x)(y).is said to be decreasing if and only ifis increasing.
n Definition 2. [1,2] Letx =(x1, ..., xn) andy=(y1, ..., yn)Î.
  k k (i)xis said to be mafk= jorized byy(in symbolsxy) ifx[i]y[i]or i=1i=1   n n 1, 2,..., n 1 andxi=yi, wherex[1]∙ ∙ ∙x[n]andy[1]∙ ∙ ∙y[n]are i=1i=1 rearrangements ofxandyin a descending order. n (ii) LetΩ,:Ω®is said to be a Schurconvex function onΩifxyon Ωimplies(x)(y).is said to be a Schurconcave function onΩif and only ifis Schurconvex function onΩ.
n Definition 3. [1,2] Letx=(x1, ..., xn) andy= (y1, ..., yn)Î.
© 2012 Shi et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents