Nucleation in the one-dimensional Cahn-Hilliard Model [Elektronische Ressource] / vorgelegt von Bernhard Gawron
137 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Nucleation in the one-dimensional Cahn-Hilliard Model [Elektronische Ressource] / vorgelegt von Bernhard Gawron

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
137 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

Nucleation in the one-dimensionalCahn-Hilliard ModelVon der Fakult¨atfu¨r Mathematik, Informatik und Naturwissenschaftender Rheinisch-Westf¨alischen Technischen Hochschule Aachenzur Erlangung des akademischen Gradeseines Doktors der Naturwissenschaftengenehmigte Dissertationvorgelegt vonDiplom-MathematikerBernhard Gawronaus Landsberg am LechBerichter: Universit¨atsprofessor Dr. Stanislaus Maier-PaapePrivatdozent Dr. Dirk Bl¨omkerTag der mu¨ndlichen Pru¨fung: 10. Juli 2006Diese Dissertation ist auf den Internetseitender Hochschulbibliothek online verfu¨gbar.2Contents1 Introduction 52 Preliminaries 152.1 Function Spaces and the OperatorA . . . . . . . . . . . . . . 162.2 The Analytic Semigroup . . . . . . . . . . . . . . . . . . . . . 183 The Cahn-Hilliard Model 213.1 The Nonlinearity . . . . . . . . . . . . . . . . . . . . . . . . . 223.2 Mild and Strong Solutions . . . . . . . . . . . . . . . . . . . . 233.3 The Ginzburg-Landau Free Energy . . . . . . . . . . . . . . . 253.4 The Energy as a Lyapunov Function . . . . . . . . . . . . . . 263.5 Global Existence and Dissipativity . . . . . . . . . . . . . . . 283.6 Existence of the Global Attractor . . . . . . . . . . . . . . . . 313.7 Equivariance of the Semiflow . . . . . . . . . . . . . . . . . . . 333.8 A Rescaling Argument . . . . . . . . . . . . . . . . . . . . . . 343.9 The Set of Equilibria . . . . . . . . . . . . . . . . . . . . . . . 353.10 The Linearization at an Equilibrium . . . . . .

Sujets

Informations

Publié par
Publié le 01 janvier 2006
Nombre de lectures 12
Langue English
Poids de l'ouvrage 1 Mo

Extrait

Nucleation in the one-dimensional
Cahn-Hilliard Model
Von der Fakult¨at
fu¨r Mathematik, Informatik und Naturwissenschaften
der Rheinisch-Westf¨alischen Technischen Hochschule Aachen
zur Erlangung des akademischen Grades
eines Doktors der Naturwissenschaften
genehmigte Dissertation
vorgelegt von
Diplom-Mathematiker
Bernhard Gawron
aus Landsberg am Lech
Berichter: Universit¨atsprofessor Dr. Stanislaus Maier-Paape
Privatdozent Dr. Dirk Bl¨omker
Tag der mu¨ndlichen Pru¨fung: 10. Juli 2006
Diese Dissertation ist auf den Internetseiten
der Hochschulbibliothek online verfu¨gbar.2Contents
1 Introduction 5
2 Preliminaries 15
2.1 Function Spaces and the OperatorA . . . . . . . . . . . . . . 16
2.2 The Analytic Semigroup . . . . . . . . . . . . . . . . . . . . . 18
3 The Cahn-Hilliard Model 21
3.1 The Nonlinearity . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Mild and Strong Solutions . . . . . . . . . . . . . . . . . . . . 23
3.3 The Ginzburg-Landau Free Energy . . . . . . . . . . . . . . . 25
3.4 The Energy as a Lyapunov Function . . . . . . . . . . . . . . 26
3.5 Global Existence and Dissipativity . . . . . . . . . . . . . . . 28
3.6 Existence of the Global Attractor . . . . . . . . . . . . . . . . 31
3.7 Equivariance of the Semiflow . . . . . . . . . . . . . . . . . . . 33
3.8 A Rescaling Argument . . . . . . . . . . . . . . . . . . . . . . 34
3.9 The Set of Equilibria . . . . . . . . . . . . . . . . . . . . . . . 35
3.10 The Linearization at an Equilibrium . . . . . . . . . . . . . . 39
4 Reduction to an Inertial Manifold 47
4.1 The Lyapunov-Perron Transformation . . . . . . . . . . . . . . 51
4.2 Smoothness of the Inertial Manifold . . . . . . . . . . . . . . . 58
5 The Finite Dimensional Flow 65
5.1 Construction of the Finite Dimensional Flow . . . . . . . . . . 65
5.2 The Projected Equilibria . . . . . . . . . . . . . . . . . . . . . 66
5.3 A Characterization of the Unstable Set . . . . . . . . . . . . . 68
5.4 Partial Orders and Index Filtrations . . . . . . . . . . . . . . 72
5.5 The Morse Decomposition . . . . . . . . . . . . . . . . . . . . 78
34 CONTENTS
5.6 The Structure of the Attractor . . . . . . . . . . . . . . . . . . 80
5.7 A Closer Look to Small Parameter Values . . . . . . . . . . . 91
6 Another Phase Space 99
6.1 Solutions in the New Phase Space . . . . . . . . . . . . . . . . 101
6.2 Extended Definition of the Energy . . . . . . . . . . . . . . . . 102
6.3 Construction of a Special Attracting Set . . . . . . . . . . . . 103
7 The Cahn-Hilliard-Cook Model 107
7.1 The Noise Term . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.2 The Integral Equation and its
Mild Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.3 The Law of the Mild Solution . . . . . . . . . . . . . . . . . . 114
7.4 The Energy as Quasi-Potential . . . . . . . . . . . . . . . . . . 119
7.5 Exit from the Attracting Set . . . . . . . . . . . . . . . . . . . 121
Bibliography 131Chapter 1
Introduction
If all the components of a metal alloy are heated to a high enough tempera-
ture, they will quickly form an almost perfect homogeneous mixture. If this
mixtureisthenrapidlyquenchedbelowacertaintemperature,thealloysolid-
ifiesandaprocessofphaseseparationdoessetin. Howthisprocesslookslike
crucially depends on the initial concentrations of the two alloy components.
If therelative initialconcentrationis intheso-calledspinodal regionS (see
0Figure 1.2) and we start close to the homogeneous mixture u(0)≈ h ≡ ,
one observes in a first stage the formation of snake-like patterns exhibiting a
characteristic length scale, see the left side of Figure 1.1, [31], and [32].
On the other hand, if is in the so-called metastable region M (see Figure
1.2), we observe the sprouting of island-like regions which are rich in one
of the components. These regions pop up at some random positions within
the alloy. Different experiments will lead to different sizes and locations of
the islands, regardless of how carefully the initial conditions are chosen. We
call this process - illustrated in Figure 1.1 on the right side - nucleation. In
order to describe phase separation of alloys around 1960 Cahn and Hilliard
proposed in [10] a deterministic model. They considered the fourth-order
parabolic partial differential equation
1 ˜u =−Δ( Δu−f(u)) in G ,t 2λ(1.1)
∂u ∂Δu
= on ∂G ,
∂ν ∂ν
for the concentration u = u(t,x) of one of the two metals as a function of
timeandspace, whereuisaffinescaled tobebetween−1 and1. The domain
56 CHAPTER 1. INTRODUCTION
Figure 1.1: Snap shots of the solutions u at some time t > 0 of the Cahn-0
2Hilliard-Cookequation(1.3)onthesquareG = (0,1) ,generatedbyThomas
Wanner. Depending on mass of the initial condition u(0) one observes
Spinodal Decomposition or Nucleation.
nG ⊂ R , n ∈ {1,2,3} is bounded with sufficiently smooth boundary - in
2 ˜Figure 1.1 one has for instance G =(0,1) . The function f is the derivative
˜of a double-well potential F, the standard example being the cubic function
13˜f(u) =u −u,seeFigure1.2. Thesmallparameter > 0modelsinteraction2λ
length. Note that due to the homogeneous Neumann boundary conditions
the Cahn-Hilliard equation is mass-conserving, i.e., the total concentrationR
1 u dx remains constant equal to along any solution u. Moreover, the|G| G
dynamics of (1.1) can be viewed as a gradient flow induced by the Ginzburg-
Landau free energy functional E (cf. Definition (3.8) in Section 3.3), i.e. if
thegradientistakenintherighttopology,thenthesystem (1.1)isequivalent
to the evolutionary equation
u =−∇E(u) .t
In the spinodal case this model agrees quite good with the experiments as
shown in [31], [32], and [36].
One of the shortcomings of the deterministic Cahn-Hilliard model is that it
neglects the continuous effect of small thermal fluctuations. For example,
this becomes apparent if we choose as initial condition a functionu(0) which
0is close to the homogeneous functionh ≡ with in the metastable region,
′ 0˜i.e. f () > 0. Then the solution of (1.1) converges to h as t → ∞, since
0h is a locally stable equilibrium - compare [6]. In other words, this model7
˜F(u)
˜f(u)
M
−1
S 1 u
3 1 2 2˜ ˜Figure 1.2: f(u)=u −u and F(u) = u (u −2)+c
4
does not match our physical experiments where we observe nucleation and
not stability.
A way out is to start with initial conditions which are sufficiently inhomoge-
neous. Indeed Bates and Fife proved in [6] for the one-dimensional domain
1 1G =(0,1) existence of spike-like solutions s and their mirrored versions s+ −
which they called canonical nuclei. Their detailed structure is displayed in
Section 3.9. The local stable manifolds of these spikes have codimension one.
Hence, BatesandFifeconjecturedthatthesemanifoldsseparatethedomains
0of attraction of the locally stable homogeneous equilibrium h and the glob-
0 0ally stable interface solutionsi , i - see Figure 1.3 and Section 3.9. We will+ −
prove this (to some extend) in Section 5.6. In this sense the spike-solutions
describe the necessary impurity which has to be introduced, in order to trig-
ger nucleation. Of course there already exist many results concerning exis-
tence and uniqueness of solutions of (1.1) or special features of the dynamics
like attractors, inertial manifolds, or Hartman-Grobman results. Confer for
instance [7], [30], [34], [37], or [38]. However, for a selfcontained presentation
we provide the semiflow S induced by (1.1) on a suitable Hilbert space. We
show existence of a global attractorA and an inertial manifoldM. Forsmall
0parameters λ the global attractor consists of the single equilibrium h . But8 CHAPTER 1. INTRODUCTION
0 1 0 1 0i s h s i− − + +
Figure 1.3: Conjecture of Bates and Fife
with increasing λ the attractor gets more and more complicated (cf. Section
5.7). Due to [22] and [23] the changes of the set of equilibriaE⊂A are com-
pletely known. Nevertheless we are far away from a systematic description
ofA. In order to investigate the fine structure of the attractor, the inertial
manifold can be used to reduce the semiflow S to a finite dimensional flow
ϕ which already contains all relevant dynamics, in particular the attractor.
See Chapter 5. In this setting we can use the theory of index filtrations to
determine some local attractors contained inA. With a continuation argu-
1 0ment in λ it is possible to prove that the connecting orbits from s to h±
1persist on a nontrivial interval λ∈ Λ. In other words the first spikes s are±
0located on the boundary of the basin of attractionB = B(h ) of the stable
0 1equilibrium h . Moreover, we show in Section 6.3 that these spikes s are±
the unique minimizers of the problem
(1.2) E(u)→ min , u∈∂B .
The set of equilibria which lie on the boundary ∂B is denoted by E , see0
1Figure 1.4. It follows s ∈E and0±
1 1e∈E \{s }⇒E(e)>E(s ) .0 ± ±
Instead of choosing the initial condition sufficiently impure, we will follow
another approach to match the stochastic element. Cook proposed in [15] a
stochasticpartialdifferentialequationmodel, commonlyreferredtoasCahn-9
E0
1s
+
0h
B
1∂B s

1Figure 1.4: Equilibria inE with minimum energy: the first spikes s0 ±
Hilliard-Cook

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents