On an inequality suggested by Littlewood
10 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

On an inequality suggested by Littlewood

-

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
10 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

We study an inequality suggested by Littlewood, our result refines a result of Bennett. 2000 Mathematics Subject Classification . Primary 26D15. We study an inequality suggested by Littlewood, our result refines a result of Bennett. 2000 Mathematics Subject Classification . Primary 26D15.

Sujets

Informations

Publié par
Publié le 01 janvier 2011
Nombre de lectures 29
Langue English

Extrait

GaoJournal of Inequalities and Applications2011,2011:5 http://www.journalofinequalitiesandapplications.com/content/2011/1/5
R E S E A R C H
On
an
Peng Gao
inequality
Correspondence: penggao@ntu. edu.sg Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
suggested
by
Open Access
Littlewood
Abstract We study an inequality suggested by Littlewood, our result refines a result of Bennett. 2000Mathematics Subject Classification. Primary 26D15. Keywords:Inequalities, infinite series, nonnegative sequences
Introduction In connection with work on the general theory of orthogonal series, Littlewood [1] raised some problems concerning elementary inequalities for infinite series. One of them asks to decide whether an absolute constantKexists such that for any nonnega an) withA tive sequence (n==a, 1 2 ∞ ∞   3/2 2 2 4 anA aAK a (1:1) n k n n n=1k=n n=1
The above problem was solved by Bennett [2], who proved the following more gen eral result: Theorem 1.1([2, Theorem 4]). Letp1,q> 0,r> 0satisfying(p(q+r)  q)/p1 be fixed.Let K(p,q,r)be the best possible constant such that for any nonnegative n sequence(an)withAn=a, =1   r ∞ ∞   1+r/q p q1+p/q p q anAnaK(p,q,r) (anAn)(1:2) k n=1 =n=1
Then
K(p,q,r)
r p(q+r)q
The special casep= 1,q=r= 2 in (1.2) leads to inequality (1.1) withK= 4 and Theorem 1.1 implies thatK(p,q,r) is finite for anyp1,q> 0,r> 0 satisfying (p(q +r) q)/p1, a fact we shall use implicitly throughout this article. We note that Bennett only proved Theorem 1.1 forp,q,r1 but as was pointed out in [3], Ben netts proof actually works for thep,q,rssatisfying the condition in Theorem 1.1. Another proof of inequality (1.2) for the special caser=qwas provided by Bennett [4] and a close look at the proof there shows that it in fact can be used to establish Theorem 1.1.
© 2011 Gao; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents