Physiological functions of mycobacterial outer membrane channel proteins [Elektronische Ressource] / vorgelegt von Frank Wolschendorf
62 pages
Deutsch

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Physiological functions of mycobacterial outer membrane channel proteins [Elektronische Ressource] / vorgelegt von Frank Wolschendorf

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
62 pages
Deutsch
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

Als Dissertation genehmigt Physiological functions of mycobacterial von der Naturwissenschaftlichen Fakultät outer membrane channel proteins der Universität Erlangen-Nürnberg Der Naturwissenschaftlichen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg zur Erlangung des Doktorgrades Tag der mündlichen Prüfung: 12. Dezember 2008 Vorsitzender der Promotionskommission: Prof. Dr. Eberhard Bänsch vorgelegt von Erstbericherstatter: Prof. Dr. Wolfgang Hillen Frank Wolschendorf Zweitberichterstatter: Prof. Michael Niederweis aus Grobengereuth / Thüringen und: Prof. Dr. Mary Jackson (geb. in Pößneck) Danke / Thanks Mein besonderer Dank gilt Prof. Dr. Michael Niederweis für die Vergabe dieses Projektes, die ausgezeichnete Betreuung, seinen wissenschaftlichen Rat, seine ständige Diskussionsbereitschaft und die hervorragenden Arbeitsbedingungen. Insbesondere die meinen Eltern Martin und Beate, Etablierung des „mycolabs“ an der „University of Alabama at Birmingham“ war eine meinen Großeltern Paul und Annerose, großartige und bereichernde Erfahrung und ich danke ihm für sein Vertrauen. sowie meinem Großvater Günther Wolschendorf Ich bedanke mich auch recht herzlich bei Herrn Prof. Dr.

Sujets

Informations

Publié par
Publié le 01 janvier 2008
Nombre de lectures 41
Langue Deutsch
Poids de l'ouvrage 13 Mo

Extrait

Physiological functions of mycobacterial outer membrane channel proteins Der Naturwissenschaftlichen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg zur Erlangung des Doktorgrades
vorgelegt von Frank Wolschendorf aus Grobengereuth / Thüringen (geb. in Pößneck)
Als Dissertation genehmigt
von der Naturwissenschaftlichen Fakultät
der Universität Erlangen-Nürnberg
Tag der mündlichen Prüfung:
Vorsitzender der Promotionskommission:
Erstbericherstatter:
Zweitberichterstatter:
und:
 12. Dezember 2008
Prof. Dr. Eberhard Bänsch
Prof. Dr. Wolfgang Hillen
Prof. Dr. Michael Niederweis
Prof. Dr. Mary Jackson
meinen Eltern Martin und Beate,
meinen Großeltern Paul und Annerose,
sowie meinem Großvater Günther Wolschendorf
Inmitten der Schwierigkeiten
liegt die Möglichkeit .
(Albert Einstein)
Danke / Thanks
Mein besonderer Dank gilt Prof. Dr. Michael Niederweis für die Vergabe dieses Projektes, die ausgezeichnete Betreuung, seinen wissenschaftlichen Rat, seine ständige
Diskussionsbereitschaft und die hervorragenden Arbeitsbedingungen. Insbesondere die Etablierung des „mycolabs“ an der „University of Alabama at Birmingham“ war eine großartige und bereichernde Erfahrung und ich danke ihm für sein Vertrauen. Ich bedanke mich auch recht herzlich bei Herrn Prof. Dr. Wolfgang Hillen, der meine Promotion an der Naturwissenschaftlichen Fakultät der Friedrich-Alexander Universität Erlangen-Nürnberg ermöglichte und unterstützte. Ferner danke ich den Professoren Dr. W. Hillen, Dr. M. Niederweis, Dr. M. Jackson, Dr.
C. Koch und Dr. G. Kreimer entsprechend für die Erstellung der Gutachten und die
Übernahme der Prüfungspflichten.
I thank my former roommates and colleagues Hoffi, Jenni, Kristin, Elli and Didi for an unforgetable experience in Sweet Home Alabama. I am very thankful to Tobi for being
so reliable in taking care of all the “dirty” things in the labratory. I have to thank Jonathan, Yoitsna, Veneet, Shveta and Jennifer for the excellent technical support by preparing media, buffers and countless other things. I also thank iron-Chris,attB-Jason,
nitrate-Rachel, in-your-a..(peep)-Axel, robot-Ryan, nano-Mikhail, drug-Olga, Houhui the Great and oracle-guru Ying for making the “mycolab” the most awesome, brisky and fittest tubercle-lab in the world.Von ganzem Herzen bedanke ich mich bei meinen Eltern Martin & Beate sowie meinen Großeltern Paul & Annerose, die mich all die Jahre so großartig unterstützten und auf die ich mich immer verlassen konnte. Mein Dank geht auch an meine Großmutter Hermine und meinen Großvater Günther, an den ich mich gern zurückerinnere. Der ganzen Familie danke ich für die vielen schönen Stunden am Telefon und all die Karten und „Hilfs“-Packete, über die ich mich immer sehr gefreut habe. Überraschungseier sind der Hit!
Index
v
1. Zusammenfassung .........................................................................................1
1. Summary .........................................................................................................2
2. Introduction .....................................................................................................3
2.1. The genus Mycobacterium ..................................................................................... 32.1.1. Taxonomy................................................................................................................ .................... 32.1.2. Evolutionary pathway of the tubercle bacilli ................................................................................. 32.1.3. Medical relevance of mycobacteria ....................................................................................... ...... 4
2.2. The mycobacterial outer membrane and its proteins ............................................. 52.2.1. Transport processes across mycobacterial outer membranes .................................................... 62.2.2. Porin mediated diffusion of hydrophilic solutes inM. smegmatis................................................. 72.2.3. The role ofM. tuberculosisOmpAin outer membrane permeability ............................................ 82.2.4. A proteome-wide screen for outer membrane proteins ofM. tuberculosis................................... 92.2.5. Rv1698 ofM. tuberculosisis a channel-forming outer membrane protein ..................................10
2.3. Uptake of phosphates by mycobacteria ............................................................... 11
2.4. Copper metabolism in mycobacteria.................................................................... 122.4.1. Metabolic requirements for copper ....................................................................................... ......122.4.2. Cytochromecoxidase ofM. tuberculosis...................................................................................122.4.3. Mycobacterial superoxide dismutase...................................................................................... ....132.4.4. Copper toxicity............................................................................................................................14
2.5. Copper transport mechanisms in bacteria ........................................................... 152.5.1. Gram-positive bacteria.................................................................................................. ..............152.5.2. Gram-negative bacteria .................................................................................................. ............152.5.3. Mycobacteria ..............................................................................................................................16
2.6. Gene deletions by allelic exchange in mycobacteria ........................................... 17
3. Aims of this thesis ........................................................................................19
Part 1: The role of MspA in uptake of inorganic ions .................................................. 19
Part 2: The physiological role of the outer membrane channel protein Rv1698 in M. tuberculosis............................................................................................................ 19
4. Materials and Methods .................................................................................20
4.1. Material ................................................................................................................ 204.1.1. Bacterial strains ..........................................................................................................................20
Index
vi
4.1.2. Plasmids ................................................................................................................ .....................204.1.3. Oligonucleotides ........................................................................................................ .................224.1.4. Antibodies.............................................................................................................. .....................224.1.5. Peptide library.............................................................................................................................23
4.2. Methods ............................................................................................................... 244.2.1. Standard protocols .....................................................................................................................244.2.2. Growth conditions....................................................................................................... ................254.2.3. Cloning of deletion vectors ............................................................................................. ............264.2.4. Protocol for gene deletions in mycobacteria ............................................................................. ..284.2.5. Induction of gene expression by acetamide inM. smegmatis.....................................................29
5. Results...........................................................................................................31
5.1. Phosphates can diffuse through the MspA channel............................................. 31
5.2. Porin-mediated membrane permeability of phosphates inM. smegmatis........... 32
5.3. A new generation of gene deletion systems for mycobacteria ............................. 415.3.1. Construction of a new suicide deletion vector forM. smegmatis. ...............................................435.3.2. A new general gene deletion system for mycobacteria ..............................................................435.3.3. The introduction of reporter genes into conditionally-replicating deletion vectors.......................44
5.4. Rv1698 homologs in mycobacteria ...................................................................... 45
5.5. Deletion of putative outer membrane proteins in mycobacteria ........................... 465.5.1. Gene deletion protocol for mycobacteria ................................................................................. ...465.5.2. Deletion strategy forrv1698/msm_3747...................................................................................635.5.3. Deletion ofmsm_3747inM. smegmatis.....................................................................................655.5.4. Deletion ofrv1698inM. tuberculosis..........................................................................................67
5.6 The role of MctB in mycobacteria.......................................................................... 69
5.7. Surface accessibility of Rv1698 (MctB) by proteinase K...................................... 85
5.8. MctB is exported in a folded conformation ........................................................... 86
5.9. MctB in whole cells is not accessible to polyclonal antibodies ............................. 87
5.10. Monoclonal antibodies against MctB.................................................................. 885.10.1. Specificity of monoclonal antibodies ................................................................................... ......895.10.2. Epitope mapping........................................................................................................ ...............905.10.3. Cross-reactivity of hybridoma clone 5D1.23 .............................................................................91
Index
vii
6. Discussion.....................................................................................................93
6.1. The physiological function of Rv1698 and its homologs. ..................................... 93
6.2. The response ofM. tuberculosis94to elevated copper levels .................................
6.3. Copper as a defense mechanism againstM. tuberculosisin macrophages. ....... 96
6.4. Copper homeostasis inM. tuberculosis............................................................... 97
7. Conclusions. ...............................................................................................100
8. Authors’ contribution .................................................................................101
9. Outlook ........................................................................................................102
9.1. Virulence ofM. tuberculosis102mutants deficient in copper homeostasis..............
9.2. Interaction of MctB with other proteins............................................................... 102
9.3. The role of MctA................................................................................................. 103
10. References.................................................................................................104
11. Abbreviations ............................................................................................115
Zusammenfassung
1. Zusammenfassung
1
Mykobakterien sind von großer Bedeutung, da Tuberkulose die weltweit verbreitetste Infektionskrankheit mit 1.7 Millionen Todesopfern darstellt. Die außergewöhnlich niedrige Durchlässigkeit der mykobakteriellen äußeren Membran gilt als Hauptursache für deren Widerstandsfähigkeit gegenüber vielen Antibiotika. Äußere Membranproteine in Gram-negativen Bakterien sind wichtig für die Nahrungsaufnahme, Sekretion und deren Infektionsvermögen.Escherichia colimehr als 60 verschiedene äußere hat Membranproteine. Keines hat Ähnlichkeit mit mykobakteriellen Proteinen. Bisher sind das Porin MspA vonMycobacterium smegmatisund das Kanal-bildende Protein OmpA vonMycobacterium tuberculosis die einzigen bekannten mykobakteriellen Membranproteine. Rv1698 vonM. tuberculosis wurde von uns als Kanalprotein der äußeren Membran mit unbekannter Funktion entdeckt. Zellen der entsprechenden Mutante reicherten 100-mal mehr Kupfer an als der Wildtyp. EineM. smegmatisMutante der das Homolog Msm_3747 fehlt, zeigte einen 11-mal höheren Kupfergehalt. Das Aufnahmevermögen für Glukose blieb jedoch unverändert. Diese Ergebnisse zeigen, dass diese Kanalproteine eine wichtige Rolle für die Ausscheidung von Kupferionen über die mykobakterielle äußere Membran spielen. Damit wurde die Ausscheidung von Kupfer als ein wichtiger Mechanismus identifiziert, mit dem Mykobakterien der Ansammlung von giftigen Kupferionen in der Zelle entgegenwirken. Rv1698 ist somit das erste mykobakterielle äußere Membranprotein mit nachgewiesener Ausscheidungs-funktion. Rv1698 hat kein Kupferbindemotiv. Ebenso fehlen der äußeren Membran die Energiequellen für den Transport entgegen dem Konzentrationsgefälle. Darum ist es wahrscheinlich, dass Rv1698 mit Kupfer-spezifischen Transportproteinen der inneren Membran interagiert. Diese sind in der Regel substratspezifisch und stellen die Energie für den Transport bereit. Darum ist zu vermuten, dass die mykobakteriellen Transportsysteme prinzipiell denen in Gram-negativen Bakterien ähneln. Kupfer über einer Konzentration von 25 µM hemmt das Wachstum vonM. tuberculosis auf künstlichem Nährmedium. Ähnliche Konzentrationen wurden in Phagosomen von Interferon- stimulierten Makrophagen gemessen. Dies lässt vermuten, dass Makrophagen das Wachstum vonM. tuberculosisHilfe von Kupfer eindämmen. mit Aufnahmemechanismen für Kupferionen sind unbekannt. Wir haben gezeigt, dass Porinmutanten vonM. smegmatisim Gegensatz zum Wildtyp auf nahezu Kupfer-freiem Medium kaum wachsen und eine Toleranz bei erhöhtem Kupfergehalt zeigen. Kupferaufnahme erfolgt somit über Porine. Kanäle in der mykobakteriellen äußeren Membran sind daher unverzichtbar für die Aufnahme und Ausscheidung überschüssiger Kupferionen. Diese Ergebnisse erweitern dramatisch unser Verständnis über mykobakterielle Transportprozesse.
Summary
2
1. Summary Mycobacterium tuberculosisthe leading cause of deaths resulting from a single is infectious disease with 1.7 million victims annually. The exceptionally low permeability of the outer membrane contributes to the intrinsic resistance of mycobacteria to many antibiotics. Despite the well-documented importance of outer membrane proteins for nutrient uptake, secretion, and host-pathogen interactions in Gram-negative bacteria, only the porin MspA ofM. smegmatisthe channel-forming protein OmpA of and M. tuberculosisbeen characterized as mycobacterial integral outer membrane have proteins. By contrast,E. coli uses more than 60 proteins to functionalize its outer membrane, none of which has significant sequence similarity to anyM. tuberculosis
protein. Rv1698 ofM. tuberculosiswas discovered by us as an outer membrane channel protein with unknown function. Intracellular copper in anM. tuberculosismutant lacking Rv1698 was 100-fold increased. AnM. smegmatis mutant lacking the close homolog Msm_3747 accumulated 11-fold more copper than the wild-type, while uptake of glucose remained unchanged. These results demonstrated that Rv1698-like channel proteins are required for copper efflux across the mycobacterial outer membrane and that secretion + of Cu is a mechanism by whichM. tuberculosis maintains copper homeostasis to prevent copper toxicity. Rv1698 is the first identified mycobacterial channel protein that is involved in efflux across the outer membrane. In addition, Rv1698 lacks a predicted copper binding motive and there is no energy source in the outer membrane that would support efflux trough the Rv1698 channels against the concentration gradient. Thus, + Rv1698 is likely recruited by Cu specific inner membrane translocases that determine substrate specificity and provide energy for the transport. These findings indicate that mycobacteria possess multicomponent efflux systems that are functionally similar to those of Gram-negative bacteria. We also found thatM. tuberculosisnot grow at did 2+ Cu concentrations above 25 µM. The amount of copper in phagosomes of macrophages stimulated with interferon- increases to similar concentrations after infection withM. tuberculosis. Thus, macrophages appear to utilize copper to control intracellular growth ofM. tuberculosis. Uptake pathways for the essential micronutrient copper are unknown in mycobacteria. However, anM. smegmatis porin mutant did not grow with trace amounts of copper (<1 µM), but was more resistant than wild-type, demonstrating that channel proteins are required for copper uptake across the outer membrane. These outer membrane channels are essential components of a considerably revised model of copper homeostasis inM. tuberculosis. The implications of these findings for our understanding of transport mechanisms and, in particular efflux systems, in mycobacteria are profound.
Introduction
2. Introduction
2.1. The genus Mycobacterium
2.1.1. Taxonomy
3
Mycobacteria are Gram-positive aerophilic bacteria with a high G+C content and show a
rough morphology with uneven formed branched cells. Taxonomically, mycobacteria belong to the genusMycobacteriumis the single genus within the family of which Mycobacteriaceaethe order Actinomycetales. This order includes various in
microorganisms, but mycobacteria and allied taxa are easily distinguished by their ability to synthesize mycolic acids (Rastogi et al., 2001). Mycobacteria possess the longest mycolic acids consisting of up to 90 carbon atoms (Barryet al.,1998) which confer acid-
fastness to these bacilli. The genus is divided in slow- and fast-growing mycobacteria, which corresponds to phylogenetic data derived from 16S rRNA sequences (Rogall et al.,Fast-growing species with generation times of less than 5 hours are mostly 1990). non-pathogenic, saprophytic soil bacteria such asMycobacterium smegmatis,M. phleiandM. chelonae. Slow-growing species have generation times of 20 hours and longer and are often pathogenic such asM. tuberculosis, the causative agent of tuberculosis (TB) andM. leprae, the pathogen causing leprosy. 2.1.2. Evolutionary pathway of the tubercle bacilli
Speciation of recent members of theM. tuberculosisis estimated to have complex occurred during the last 15,000 to 20,000 years (Kapural., et  1994). The complex consists ofM. tuberculosis,M. canettii,M. africanum,M. microtiandM. bovis(including M. bovisBCG). All members have identical rRNA sequences (Boddinghauset al.,1990;
Broschet al.,2001) and exceptional little sequence variation resulting in 99.9% identity
of their genomes at the nucleotide level (Sreevatsan et al.,Musser 1997; al., et  2000). The subspecies can only be distinguished by a few phenotypic and genotypic characteristics but show great variety in terms of host range and pathogenicity (Brosch
et al., 2001; Broschal., et  2002). Before genome sequences were available it was believed thatM. tuberculosisevolved fromM. bovisby adaptation of an animal pathogen to the human host (Gonzalez-Flecha and Demple 1995). However, analysis of the genomes revealed thatM. bovis has undergone numerous deletions relative toM. tuberculosis and therefore seems to be part of a separate lineage represented byM. africanum,M. microtiandM. bovis. This group is defined by successive loss of DNA in
Introduction
4
relation toM. tuberculosis resulting in decreasing genome sizes (Garnieral., et  2003). There are 14 regions of difference (RD1-14) that are absent inM. bovisBCG relative to
M. tuberculosis and 10 of those regions have been used as evolutionary markers to propose the evolutionary pathway of the tubercle bacilli within theM. tuberculosiscomplex (Fig. 2.1) (Broschet al.,2002).
Figure 2.1:Scheme of the proposed evolutionary pathway of the tubercle bacilli. The scheme is based on the presence or absence of conserved deleted regions and on sequence polymorphisms in five selected genes. Blue arrows indicate that 463. 95 strains are characterized bykatG CTG (Leu),gyrA(Thr), typical for group 1 organisms. Green arrows indicate ACC 463 95 that strains belong to group 2 characterized bykatGCGG (Arg),gyrAACC (Thr). The red arrow indicates that strains 463 95 belong to group 3, characterized bykatG CGG (Arg),gyrA AGC (Ser), as defined by Sreevatsanal., et The 1997. figure was taken from Broschet al.,2002.
2.1.3. Medical relevance of mycobacteria
Mycobacteria are of great importance becauseM. tuberculosis is the leading cause of deaths resulting from a single infectious disease with 9.2 million new cases and 1.7 million deaths in 2006 (world health organization report 2008). The world health organization estimates that one third of the world’s population is infected and about 5 to
10% of infected people will become sick or infectious during their lifetime (WHO report, Factsheet No 104, revised 2007). Infection withM. tuberculosis does not lead
Introduction
5
unavoidably to disease, since the immune system can control the bacilli in check forcing
them to adapt to prolonged periods of dormancy in tissues (Wayne 1994). It is suggested that the ability to shift down into non-replicating stages is crucial for the ability of tubercle bacilli to be dormant in the host for years or decades (Wayne and Hayes
1996). Immunocompetent individuals harboring latentM. tuberculosis carry a 2-23 % lifetime risk of reactivating tuberculosis, while patients with HIV reactivate tuberculosis at a much higher rate (Parrish et al.,A problem is the rise of multi-drug resistant 1998). (MDR) strains (Bleed et al.,which are resistant against at least rifampicin and 2001) isoniazid. Nearly 5% of all new infections are caused by MDR strains causing 500,000 tuberculosis cases per year. In addition, an extensively drug-resistance (XDR) form of tuberculosis has been reported in 45 countries. XDR tuberculosis is virtually untreatable
and seriously threatens control efforts. Treatment of tuberculosis is difficult since only a few antibiotics are effective against fully susceptibleM. tuberculosis strains. Chemotherapy takes up to 6 month and must be extended for up to 2 years for MDR tuberculosis. The fact that many antibiotics do not affectM. tuberculosis can mostly be attributed to the unique mycobacterial cell wall which shields the mycobacterial cell from
antibiotics and other toxic molecules due to its very low permeability (Brennan and Nikaido 1995). 2.2. The mycobacterial outer membrane and its proteins
Due to its paramount importance as a pathogen, the growth and nutritional requirements ofM. tuberculosishave been intensively studied since its discovery more than a century ago (Koch 1882). However, nutrient transport inM. tuberculosisis still poorly understood despite a wealth of genomic data (Niederweis 2008). This is true in particular for
transport processes across the outer membrane. The outer membrane ofM. bovisBCG
and ofM. smegmatiswas visualized by cryo-electron microscopy (Fig. 2.2) and showed
that mycolic acids are an essential component of this unusual supported lipid bilayer (Hoffmann et al.,Mycolic acids are believed to form the inner leaflet of an 2008). asymmetrical bilayer while lipids that are extractable by organic solvents are assumed to
form the outer leaflet (Minnikin 1982). X-ray diffraction of isolated mycobacterial cell walls showed that the mycolic acids are oriented parallel to each other and perpendicular to the plane of the cell envelope (Nikaido 1993). Its unique architecture and composition raise the question of how the mycobacterial outer membrane is
  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents