Porous silicon for thin solar cell fabrication [Elektronische Ressource] / vorgelegt von Osama Tobail
147 pages
English

Porous silicon for thin solar cell fabrication [Elektronische Ressource] / vorgelegt von Osama Tobail

Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres
147 pages
English
Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres

Description

Porous Silicon forThin Solar Cell FabricationVon der Fakultät Informatik, Elektrotechnik und Informationstechnikder Universität Stuttgart zur Erlangung der Würde einesDoktor-Ingenieurs (Dr.-Ing.) genehmigte AbhandlungVorgelegt vonOsama Tobailgeboren in AlexandriaHauptberichter: Prof. Dr. rer. nat. habil. J. H. WernerMitberichter: Prof. Dr. H. FöllTag der Einreichung: 21.05.2008Tag der mündlichen Prüfung: 05.12.2008Institut für Physikalische Elektronik der Universität Stuttgart2008ContentsSummary vZusammenfassung ix1 Introduction 11.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.3 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Fundamentals 62.1 Porous Silicon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62.1.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72.1.2 Electrochemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92.1.3 Dissolution reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . 122.1.4 Formation models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132.1.5 Influence of formation conditions . . . . . . . . . . . . . . . . . . . 162.1.6 Optical properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182.2 Solar Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Informations

Publié par
Publié le 01 janvier 2009
Nombre de lectures 14
Langue English
Poids de l'ouvrage 3 Mo

Extrait

Porous Silicon for
Thin Solar Cell Fabrication
Von der Fakultät Informatik, Elektrotechnik und Informationstechnik
der Universität Stuttgart zur Erlangung der Würde eines
Doktor-Ingenieurs (Dr.-Ing.) genehmigte Abhandlung
Vorgelegt von
Osama Tobail
geboren in Alexandria
Hauptberichter: Prof. Dr. rer. nat. habil. J. H. Werner
Mitberichter: Prof. Dr. H. Föll
Tag der Einreichung: 21.05.2008
Tag der mündlichen Prüfung: 05.12.2008
Institut für Physikalische Elektronik der Universität Stuttgart
2008Contents
Summary v
Zusammenfassung ix
1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Fundamentals 6
2.1 Porous Silicon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Electrochemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 Dissolution reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.4 Formation models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.5 Influence of formation conditions . . . . . . . . . . . . . . . . . . . 16
2.1.6 Optical properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Solar Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.1 Theory of operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.2 Characterization methods . . . . . . . . . . . . . . . . . . . . . . . 23
3 Porous Silicon Technology at ipe 28
3.1 Experimental Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Application fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.1 Transfer process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.2 Photoluminescence . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.3 Germanium on porous silicon (GOPS) . . . . . . . . . . . . . . . . 34
3.3 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
iii CONTENTS
4 Porous Silicon Characterization 38
4.1 Porosity Determination by White Light Interferometries . . . . . . . . . . . 38
4.1.1 Experimental details . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.1.2 Modeling of multilayer porous Si system . . . . . . . . . . . . . . . 40
4.1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2 Dissolution Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.1 Experimental details . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.2 Silicon dissolution model . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5 Layer Transfer Process Enhancement 55
5.1 Experimental Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2.1 Lateral homogeneity enhancement . . . . . . . . . . . . . . . . . . . 58
5.2.2 Process yield increase . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6 Selective Porous Silicon Formation 66
6.1 Experimental Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.3 Modeling the Si/HF Interface . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.3.1 p-type silicon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.3.2 n-type silicon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.3.3 Selectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.4 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7 Free-Standing Silicon Thin-Films 82
7.1 Experimental Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.2.1 Laser power optimization . . . . . . . . . . . . . . . . . . . . . . . . 87
7.3 Handling of Free-Standing Thin Layers . . . . . . . . . . . . . . . . . . . . 91
7.4 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 93CONTENTS iii
8 Solar Cells 95
8.1 Integrated Mini-Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
8.1.1 Experimental Details . . . . . . . . . . . . . . . . . . . . . . . . . . 97
8.1.2 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . 97
8.2 Free-Standing Solar Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
8.2.1 Experimental details . . . . . . . . . . . . . . . . . . . . . . . . . . 99
8.2.2 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . 102
8.2.3 Further reduction of costs and process complexity . . . . . . . . . . 106
8.3 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Outlook 112
A Light as an Electromagnetic Wave 114
B Etching Cell Simulation 116
C Abbreviations and Symbols 117
Publication List 121
Bibliography 122
Curriculum Vitae 130
Acknowledgement 131Summary
The thesis on hand considers the preparation and the characterization of porous silicon
for the fabrication of monocrystalline silicon thin layers and solar cells. The reduction
of the solar cell thickness decreases the material consumption, offers the fabrication of
mechanically flexible cells, and enhances the physical properties of solar cells. Therefore,
the goal of this work is to fabricate free-standing thin monocrystalline silicon solar cells.
The layer transfer process provides an economical production of thin film silicon solar
cells with thicknesses d betweend = 20 and d = 50„m on foreign superstrates. An epoxy
resin attaches the solar cell onto a foreign superstrate. The layer transfer process allows
1the fabrication of 50 „m thin silicon solar cell on glass with an efficiency · = 16.9 % by
2means of a complex low temperature back side process and with · = 16.6 % by means of
a full area aluminium back contact. The transfer process requires a double layer porous
silicon on a silicon wafer, namely a low porosity upper layer on a buried high porosity
layer. Duringaheattreatment,theupperlowporositylayerformsaquasi-monocrystalline
silicon layer, which is suitable for high quality epitaxial growth. The buried high porosity
layer forms a separation layer, which is mechanically weak and allows the separation of
the epitaxy layer from the host wafer. The mechanical properties of the layer
has to be fine-adjusted to provide a mechanical stability during the device fabrication
process but to allow an easy separation of the device from the host wafer as well.
Unfortunately, the layer transfer process has the following drawbacks: i) The glass on
top of the solar cells complicates the series connection of cells to build modules, as the
front side contact is beneath the glass. ii) The separation layer adjustment is difficult
due to the very narrow process window, and hence the process yield is very low. iii) The
epoxy resin limits the cell performance due to its high absorption in the low wavelength
radiation regime. It also limits the back side processing temperature because its optical
properties degrade at high temperatures.
The present thesis approaches the three drawbacks of the transfer process from three
1Independently confirmed by ISE CalLab, Germany and presented by Brendle in his PhD thesis [1]
2Independently confirmed by ISE CalLab, see Ref. [2]
vvi SUMMARY
sides: First, it develops a new technique for the integrated module connection from trans-
fer cells. Second, it enhances the homogeneity of porous silicon and hence the layer trans-
fer process yield by means of a new etching setup for porous silicon formation. Third,
it introduces a new technique, which fabricates thin free-standing monocrystalline silicon
layers and solar cells.
Thefirstapproachdevelopsanewtechniqueofamini-moduleconnectionfromtransfer
cells. The technique uses the laser machining to fabricate an integrated mini-module from
cells, which are transferred onto a single glass superstrate. The resulting module shows
a silicon utility U = 0.74 W/g, which is double the silicon utility of a wafer based highSi
efficiency module.
The second approach enhances the layer transfer process by investigating porous sil-
icon. As the transfer process quality depends mainly on porous silicon structural prop-
erties, a non-destructive determination of porosity and layer thickness is necessary. This
work presents a new non-destructive method to estimate the porosity of single as well as
multi layer porous silicon systems. A comparison between the white-light-interferometry
results and and an independent scanning electron microscope measurement of shows de-
viations lower than 2 %. This thesis applies the new

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents