Pseudomorphic and metamorphic HEMT-technologies for industrial W-band low-noise and power applications [Elektronische Ressource] / von Jan Erik Grünenpütt
199 pages
English

Pseudomorphic and metamorphic HEMT-technologies for industrial W-band low-noise and power applications [Elektronische Ressource] / von Jan Erik Grünenpütt

Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres
199 pages
English
Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres

Description

Pseudomorphic and metamorphicHEMT technologies for industrial W bandlow noise and power applicationsDISSERTATIONzur Erlangung des akademischen Grades einesDOKTOR INGENIEURS(DR. ING.)der Fakultät für Ingenieurwissenschaftenund Informatik der Universität UlmvonJAN ERIK GRÜNENPÜTTAUS HEIDENHEIM A.D. BRENZGutachter: Prof. Dr. Ing. Erhard KohnProf. Dr. Christophe GaquièreAmtierender Dekan: Prof. Dr. Ing. Michael WeberUlm, 14. Dezember 2009This work has been prepared from January 2001 to March 2009 at UnitedMonolithic Semiconductors GmbH, and the University of Ulm, departmentof electron devices and circuits.Parts of this work have already been published:J. Grünenpütt, C. Gässler, D. Geiger, R. Deufel, C. Woelk, E. Kohn, "Se lective double recess technology on metamorphic HEMTs improving the on state breakdown behavior", Technical Digest CS MAX, San Jose, CA, Nov2002A. Bessemoulin, C. Gaessler, J. Gruenenpuett, B. Reig, "Hot via interconnects:A Step towards Surface Mount Chipscale Packaged MMICs up to 110GHz",thTechnical Digest: 26 IEEE CSIC Symposium, Monterey, Oct. 2004J. Gruenenpuett, C. Gaessler, C. Gaquière, E. Kohn, "800mW/mm powerdensity @ 94GHz for a 70nm pHEMT technology", Technical digest CS MAX04, Monterey, Oct. 2004A. Bessemoulin, J. Gruenenpuett, P. Fellon, A. Tessmann, E. Kohn, "Copla nar W Band Low Noise Amplifier MMIC Using 100 nm Gate length GaAsthPHEMTs",12 GaAs Symposium - Amsterdam, Oct. 2004A. Bessemoulin, P. Fellon, J.

Informations

Publié par
Publié le 01 janvier 2009
Nombre de lectures 85
Langue English
Poids de l'ouvrage 14 Mo

Extrait

Pseudomorphic and metamorphic
HEMT technologies for industrial W band
low noise and power applications
DISSERTATION
zur Erlangung des akademischen Grades eines
DOKTOR INGENIEURS
(DR. ING.)
der Fakultät für Ingenieurwissenschaften
und Informatik der Universität Ulm
von
JAN ERIK GRÜNENPÜTT
AUS HEIDENHEIM A.D. BRENZ
Gutachter: Prof. Dr. Ing. Erhard Kohn
Prof. Dr. Christophe Gaquière
Amtierender Dekan: Prof. Dr. Ing. Michael Weber
Ulm, 14. Dezember 2009This work has been prepared from January 2001 to March 2009 at United
Monolithic Semiconductors GmbH, and the University of Ulm, department
of electron devices and circuits.
Parts of this work have already been published:
J. Grünenpütt, C. Gässler, D. Geiger, R. Deufel, C. Woelk, E. Kohn, "Se
lective double recess technology on metamorphic HEMTs improving the on
state breakdown behavior", Technical Digest CS MAX, San Jose, CA, Nov
2002
A. Bessemoulin, C. Gaessler, J. Gruenenpuett, B. Reig, "Hot via interconnects:
A Step towards Surface Mount Chipscale Packaged MMICs up to 110GHz",
thTechnical Digest: 26 IEEE CSIC Symposium, Monterey, Oct. 2004
J. Gruenenpuett, C. Gaessler, C. Gaquière, E. Kohn, "800mW/mm power
density @ 94GHz for a 70nm pHEMT technology", Technical digest CS
MAX04, Monterey, Oct. 2004
A. Bessemoulin, J. Gruenenpuett, P. Fellon, A. Tessmann, E. Kohn, "Copla
nar W Band Low Noise Amplifier MMIC Using 100 nm Gate length GaAs
thPHEMTs",12 GaAs Symposium - Amsterdam, Oct. 2004
A. Bessemoulin, P. Fellon, J. Grünenpütt, A. Tessmann, H. Massler, W. Rein
ert, E. Kohn, "High gain 110GHz Low Noise Amplifier MMICs using 120
thnm Metamorphic HEMTs and Coplanar Waveguides", 13 GaAs European
Microwave Week, 2005
C. Gaquière, J. Grünenpütt, D. Jambon, E. Delos, D. Duccatteau, M. Werquin,
D. Théron, P. Fellon , "A High Power W Band Pseudomorphic InGaAs Chan
nel PHEMT", IEEE Electron Device Letters, vol. 26, Aug. 2005, pp. 533–
534Pseudomorphic and metamorphic HEMT technologies for
industrial W band low noise and power applications
Abstract: The W band ranging from 75 to 110 GHz marks a frequency window of low
atmospheric absorption which is suited for high bandwidth data transmission but also for
radar applications. Especially the 94 GHz absorption minimum is used for cloud profiling
radars to detect rain from satellites. Active radar systems are found for traffic control
on runways but also to identify debris as a severe danger to the safety and integrity of
aircrafts. Multi channel passive radar imaging allow the detection of concealed weapons
at security gates. With an increased demand for such security systems there is a growing
market for W band low noise and power amplifiers to be addressed by industry.
Up to 77 GHz integrated circuits are realized by commercial 150 nm gate length pseudo
morphic high electron mobility transistors (pHEMT). To address higher frequency levels,
the active devices have to provide more gain. The development and fabrication of such
devices are part of this work, where fabrication processes have to be compatible with the
4” fabrication environment of United Monolithic Semiconductors including the industry
requirements regarding fabrication yield and device reliability. Besides the progression
of the pHEMT technology by down scaling of the gate length to 80 nm, two single recess
and one double recess metamorphic HEMT technology on GaAs substrate have been de
veloped to improve the RF gain by the superior transport properties of the low bandgap
In Ga As channel. A channel indium concentration of 60 % and 43 % has been in x 1¡x
vestigated for device optimization depending on the application such as low noise and
power.
After a general discussion of the pseudomorphic and metamorphic HEMT structures in
cluding the gate recess configuration and device breakdown, the fabrication modules and
optimizations referring to the particular technology are presented with respect to repro
ducibility and fabrication yield. An acceptable wafer fabrication yield of 73 % with good
prospectives for further improvement has been realized for the pHEMT technology. The
fabrication yield of 26 % for the metamorphic low noise technology is low and does not
comply with the production requirement of 60 %. MESA isolation in combination with
–device passivation at temperatures above 250 C has been identified to be responsible for
the low yield and requires further optimization.
The 120 nm low noise metamorphic HEMTs show a transit frequency of 200 GHz and a
maximum oscillation frequency around 300 GHz. The associated gain of 5.4 dB at 94 GHz
with a noise figure of 3 dB is in line with institute results for well passivated devices. Sev
eral low noise demonstrator amplifiers are presented providing a gain of 6 dB per stage at
94 GHz with noise figures around 4.5 dB. Similar performances have been demonstrated
by a two stage common source low noise amplifier fabricated with the pseudomorphic
HEMT technology. Although not optimized for low noise the pHEMT demonstrator had
even the lower noise figure of 3.7 dB.
The metamorphic power technology provides state of the art performance with a power
density of 380 mW/mm at 94 GHz and a linear gain of 8.5 dB for 3 V operation. De
spite a high off state breakdown voltage above 10 V, the devices cannot be operated athigher voltage levels due to impact ionization related device burn out. The pseudomor-
phic HEMT technology is less sensitive towards impact ionization because of the higher
bandgap in the channel. Although the off state breakdown voltage of the pseudomorphic
HEMT of 6.5 V is considerably low, the devices can be operated up to 4.5 V and demon
strate state of the art output power densities up to 900 mW/mm at 94 GHz. Together with
a linear gain of 10 dB, the pseudomorphic HEMT technology provides the better RF
power performance compared to the metamorphic power HEMTs and was selected for
non linear modeling and demonstrator design. Three stage power amplifiers have been
fabricated providing a maximum output power of 180 mW at 94 GHz with a linear gain
of 11 dB for 3.5 V operation.
Due to the limitation of the gate length to 120 nm for the 3 layer resist gate technology,
the metamorphic HEMT technology could not demonstrate its whole potential regard
ing RF gain and noise figure. As a consequence of the high yield fabrication, superior
power performance at 94 GHz, and similar or even better low noise properties the indus
trialization of the 80 nm pseudomorphic HEMT technology started at United Monolithic
Semiconductors to provide low noise and power amplifiers for the next generation of W-
band applications. However, to target for even higher frequencies, further investigations
have to be performed on the metamorphic devices for reduced gate length and improved
fabrication yield.Contents
1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Field Effect Transistor 5
2.1 Idea of the HEMT structure . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1 Charge control model . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Channel electron transport . . . . . . . . . . . . . . . . . . . . . 10
2.2 DC characteristics and parameters . . . . . . . . . . . . . . . . . . . . . 15
2.3 RF characteristics and . . . . . . . . . . . . . . . . . . . . . 18
2.3.1 Small signal model and equivalent circuit . . . . . . . . . . . . . 18
2.3.2 Noise considerations . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.3 Noise model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.4 FETs in amplifiers . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4 Recess configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5 Epitaxy structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.5.1 Pseudomorphic HEMT structures on GaAs substrate . . . . . . . 35
2.5.2 epitaxy . . . . . . . . . . . . . . . . . . . 37
2.5.3 Metamorphic HEMT structures on GaAs substrate . . . . . . . . 38
2.5.4 epitaxy for low noise devices . . . . . . . . . . . . 40
2.5.5 for power devices . . . . . . . . . . . . . . 42
3 Device fabrication 47
3.1 Incoming control of epitaxy . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2 Device isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2.1 Implantation isolation . . . . . . . . . . . . . . . . . . . . . . . 49
3.2.2 Mesa isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3 Ohmic contact formation . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3.1 Alloyed ohmic contacts . . . . . . . . . . . . . . . . . . . . . . . 51
3.3.2 Refractory ohmic contact for low noise metamorphic HEMT . . . 58
3.4 Gate definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.4.1 Dielectric assisted gate technology . . . . . . . . . . . . . . . . . 62
3.4.2 3 layer resist gate technology . . . . . . . . . . . . . . . . . . . 68
3.4.3 Gate yield: dielectric assisted versus 3 layer resist technology . . 72
3.5 Gate recess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.5.1 Recess on metamorphic wafers . . . . . . . . . . . . . . . . . . . 74
3.5.2 o

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents