Regularity of n/2-harmonic maps into spheres [Elektronische Ressource] / vorgelegt von Armin Schikorra
83 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Regularity of n/2-harmonic maps into spheres [Elektronische Ressource] / vorgelegt von Armin Schikorra

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
83 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

Regularity of n/2-harmonic maps into spheresVon der Fakult at fur Mathematik, Informatik und Naturwissenschaftender Rheinisch{Westf alischen Technischen Hochschule Aachenzur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigteDissertationvorgelegt vonDiplom{MathematikerArmin Schikorraaus Altenkirchen (Westerwald)Berichter: Prof. Dr. Heiko von der Mosel (RWTH Aachen)Prof. Dr. Pawe l Strzelecki (Uniwersytet Warszawski)Tag der mundlic hen Prufung: 22. September 2010Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfugbar.AbstractIn the present thesis, we consider critical points of the functional n 2 4E (v) := vnnRn nn n n2 2evaluated at points v2 H (R ) with the constraintjvj = 1 on some domain DR . Here, H (R ) denotes2 nthe fractional Sobolev space of all functions v2L (R ) such thatn ^ 2 n2j j v ()2L (R );^where () is the Fourier transform. We extend earlier results for evenn andn = 1 to arbitrary dimensionn2Nby proving H older continuity of critical points u of E .nAs for the proof, we adapt an approach by L. Tartar, which was used originally to prove Wente’s inequality, inorder to ensure the existence of compensation phenoma appearing in the Euler-Lagrange equations.In order to localize this e ect, we establish several localization results for nonlocal operators comparable to thefractional laplacian.

Sujets

Informations

Publié par
Publié le 01 janvier 2010
Nombre de lectures 5
Langue English

Extrait

Regularity of n/2-harmonic maps into spheres
VonderFakulta¨tfu¨rMathematik,InformatikundNaturwissenschaften derRheinischWestfa¨lischenTechnischenHochschuleAachen zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigte Dissertation
vorgelegt von
Diplom–Mathematiker Armin Schikorra aus Altenkirchen (Westerwald)
Berichter: Prof. Dr. Heiko von der Mosel (RWTH Aachen) Prof.Dr.PawelStrzelecki(UniwersytetWarszawski)
Tagderm¨undlichenPr¨ufung:22.September2010
DieseDissertationistaufdenInternetseitenderHochschulbibliothekonlineverf¨ugbar.
Abstract In the present thesis, we consider critical points of the functional En(v) :=ˆΔ4vn2 Rn evaluated at pointsvHn2(Rn) with the constraint|v|= 1 on some domainDRn. Here,Hn2(Rn) denotes the fractional Sobolev space of all functionsvL2(Rn) such that |∙|n2v()L2(Rn), where () extend earlier results for evenis the Fourier transform. Wenandn= 1 to arbitrary dimensionnN byprovingHo¨ldercontinuityofcriticalpointsuofEn. As for the proof, we adapt an approach by L. Tartar, which was used originally to prove Wente’s inequality, in order to ensure the existence of compensation phenoma appearing in the Euler-Lagrange equations. In order to localize this effect, we establish several localization results for nonlocal operators comparable to the fractional laplacian. Finally, in order to prove that the Euler-Lagrange equations govern the growth of Δ4nuwe develop a fractional version of Hodge decomposition with local estimates similar to Cauchy estimates. Then, a fractional yet localized version of the Dirichlet growth theorem which we establish in the appendix impliesH¨oldercontinuity.
Contents
1 Introduction 2 Lorentz-, Sobolev Spaces and Cutoff Functions 2.1 Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Lorentz Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3 Fractional Sobolev Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4 Annuli-Cutoff Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.5 An Integral Definition for the Fractional Laplacian . . . . . . . . . . . . . . . . . . . . . . . . . . 3MeanValuePoincare´InequalityofFractionalOrder 3.1 On the Ball . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 On the Annulus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 Comparison between Mean Value Polynomials on Different Sets . . . . . . . . . . . . . . . . . . . 4 Integrability and Compensation Phenomena 5 Localization Results for the Fractional Laplacian 5.1 Multiplication with Disjoint Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2 Equations with Disjoint Support localize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3 Hodge decomposition and Local Estimates ofs of Theorem Proof-harmonic Functions:1.6. . . 5.4 Products of Lower Order Operators localize well . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5 Fractional Product Rules for Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Local Estimates and Compensation Phenomena: Proof of Theorem1.5 7 Euler-Lagrange Equations 8 Homogeneous Norm for the Fractional Sobolev Space 8.1 Comparison Results for the Homogeneous Norm . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.2 Localization of the Homogeneous Norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Growth Estimates: Proof of Theorem1.2 A Ingredients for the Dirichlet Growth Theorem A.1 Iteration Lemmata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.2 A Fractional Dirichlet Growth Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6 11 11 13 15 19 22 27 28 31 34 43 45 45 46 47 50 52 56 64 66 66 69 72 76 76 79
1 Introduction
1 Introduction In his seminal work [elH´90]F´e.Hko-dihetwromtapsfdtsiulinoianemsnlagureedovprinlemcinomrahrofytir B1(0)R2into them-dimensional sphereSm1Rmfor arbitrarymN. These maps are critical points of the functional E2(u) :=ˆ|ru|2,whereuW1,2(B1(0),Sm1). B1(0)R2 The importance of this result is the fact that harmonic maps in two dimensions are special cases of critical points of conformally invariant variational functionals, which play an important role in physics and geometry and have been studied for a long time H´lein’s approach is based on the discovery of a compensation phenomenon : e appearing in the Euler-Lagrange equations ofE2, using a relation between div-curl expressions and the Hardy space.ThiskindofrelationhadbeendiscoveredshortlybeforeinthespecialcaseofdeterminantsbyS.Mu¨ller [l90M¨u] and was generalized by R. Coifman, P.L. Lions, Y. Meyer and S. Semmes [CLMS93hdsineedentxleie].H´ result to the case where the sphereSm1general target manifold developing the so-called moving-is replaced by a frame technique which is used in order to enforce the compensation phenomenon in the Euler-Lagrange equations [H´el91inally,T].F[eR.vi`ireRiv07] was able to prove regularity for critical points of general conformally invariant functionals, thus solving a conjecture by S. Hildebrandt [Hil82]. He used an ingenious approach based on K. Uhlenbeck’s results in gauge theory [Uhl82] in order to implement div-curl expressions in the Euler-Lagrange equations,atechniquewhichcanbereinterpretedasanextensionofH´eleinsmovingframemethod;see[Sch10]. FormoredetailsandreferenceswerefertoHe´leinsbook[2l0´eH] and the extensive introduction in [Riv07] as well as [Riv09]. Naturally, it is interesting to see how these results extend to other dimensions: In the four-dimensional case, regularity can be proven for critical points of the following functional, the so-called extrinsic biharmonic maps: E4(u) :=ˆ|Δu|2,whereuW2,2(B1(0),Rm). B1(0)R4 This was done by A. Chang, L. Wang, and P. Yang [CWY99a sphere as the target manifold,] in the case of and for more general targets by P. Strzelecki [Str03], C. Wang [Wan04] and C. Scheven [Sch08]; see also T. LammandT.Rivi`erespaper[LR08 generally, for all even]. Morensimilar regularity results hold, and we6 refer to the work of A. Gastel and C. Scheven [GS09] as well as the article of P. Goldstein, P. Strzelecki and A. Zatorska-Goldstein [GSZG09]. In odd dimensions non-local operators appear, and only two results for dimensionn= 1 are available. In [DLR09aLioandT],F.Dnocredlofytiuniteri`iv.RH¨veroepfenufohtanltcoiiticorcrintsalpo EˆΔ14u2ributionsuwith finite energy anduSm1a.e. 1(u) =,defined on dist R1 In [DLR10] this is extended to the setting of general target manifolds. In general, we consider forn, mNand some domainDRnthe regularity of critical points onDof the functional En(v) =ˆΔn4v2, vH2n(Rn,Rm), vSm1a.e. inD. (1.1) Rn Here, Δ4ndenotes the operator which acts on functionsvL2(Rn) according to n Δn4v(ξ) =|ξ|2v(ξ),for almost everyξRn, where ()denotes the application of the Fourier transform. The spaceHn2(Rn) is the space of all functions vL2(Rn) such that Δn4vL2(Rn us remark that the interest in energies of the type (). Let1.1) is not only motivated by above mentioned purely theoretic considerations. In fact, energies like that appear in physical models of, e.g., magnetostatic energies (cf. [KMM06 term “critical point” is defined as usual:]). The Definition 1.1(Critical Point).LetuHn2(Rn,Rm),DRn. We say thatuis a critical point ofEn()on Difu(x)Sm1for almost everyxDand d dtt0E(ut,ϕ) = 0 =
6
for anyϕC0(D,Rm)whereut,ϕHn2(Rn)is defined as ut,ϕ=(uΠ(u+)ininRD,n\D. Here,Πdenotes the orthogonal projection from a tubular neighborhood ofSm1intoSm1defined asΠ(x) =|xx|. Ifnis an even number, the domain ofEn() is just the classic Sobolev spaceHn2(Rn)Wn2,2(Rn), for odd dimensions this is a fractional Sobolev space (see Section2.3 in). FunctionsHn2(Rn) can contain logarithmic singularities (cf. [Fre73]) but this space embeds continuously intoBM O(Rn), and even only slightly improved integrability or more differentiability would imply continuity. In the light of the existing results in even dimensions and in the one-dimensional case, one may expect that similar regularity results should hold for any dimension. As a first step in that direction, we establish regularity ofn/2-harmonic maps into the sphere. Theorem 1.2.For anyn1, critical pointsuH2n(Rn)ofEnon a domainDllyH¨oldarelocantinercouous inD. Note that here – in contrast to [DLR09] – we work on general domainsDRn. This is motivated by the factsthatH¨oldercontinuityisalocalpropertyandthatΔn4(though it is a non-local operator) still behaves “pseudo-local”: We impose our conditions (here: being a critical point and mapping into the sphere) only in some domainDRn, and still get interior regularity withinD. Let us comment on the strategy of the proof. As said before, in all even dimensions the key tool for proving regularity is the discovery ofcompensation phenomenabuilt into the respective Euler-Lagrange equation. For example, critical pointsuW1,2(D,Sm1) ofE2satisfy the following Euler-Lagrange equation [le09´H] Δui=ui|ru|2,weakly inD, for alli= 1. . . m. (1.2) For mappingsuW1,2(R2,Sm1) this is a critical equation, as the right-hand side seems to lie only inL1: If we had no additional information, it would seem as if the equation admitted a logarithmic singularity (for examples see, e.g., [Riv07], [Fre73]). But, using the constraint|u| ≡1, one can rewrite the right-hand side of (1.2) as m m ui|ru|2=Xuirujujrui∙ ruj=X1Bij2uj2Bij1ujj=1j=1 where theBijare chosen such that1Bij=ui2ujuj2ui, and2Bij=ui1ujuj1ui, a choice which is possibleduetoPoincar´esLemmaandbecause(1.2) implies divuirujujrui= 0 for everyi, j= 1. . . m. Thus, (1.2) transforms into m Δui=X1Bij2uj2Bij1uj,(1.3) j=1 a form whose right-hand side exhibits a compensation phenomenon which in a similar way already appeared in the so-called Wente inequality [Wen69], see also [BC84], [Tar85]. In fact, the right-hand side belongs to the Hardy space (cf. [9lu¨0M], [CLMS93]) which is a proper subspace ofL1with enhanced potential theoretic properties.Namely,membersoftheHardyspacebehavewellwithCalder´on-Zygmundoperators,andbythis one can conclude continuity ofu. An alternative and for our purpose more viable way to describe this can be found in L. Tartar’s proof [Tar85] of Wente’s inequality: Assume we have fora, bL2(R2) a solutionwH1(R2) of Δw=1a ∂2b2a ∂1bweakly inR2.(1.4) Taking the Fourier-Transform on both sides, this is (formally) equivalent to |ξ|2w(ξ) =cˆa(x)b(ξx) (x1(ξ2x2)x2(ξ1x1))dx,forξR2.(1.5) R2 Now the compensation phenomena responsible for the higher regularity ofwcan be identified with the following inequality: 1 1 |x1(ξ2x2)x2(ξ1x1)| ≤ |ξ||x|2|ξx|2.(1.6)
7
1 Introduction
Observe, that|x|as well as|ξx|appear to the power 1/ these factors as Fourier multi- Interpreting2, only. pliers, this means that only “half of the gradient”, more precisely Δ14, ofaandbenters the equation, which implies that the right-hand side is a “product of lower order” operators. In fact, plugging (1.6) into (1.5), one can concludewL1(R2dYanngould¨oserytiloLnonisauqecesconsrentzspanohesaqeeutnylbtHyj)su proven continuity ofw, because the inverse Fourier transform mapsL1intoC0. As explained earlier, (1.2) can be rewritten as (1.3) which has the form of (1.4), thus we have continuity for critical points ofE2, and by a bootstraping argument (see [Tom69]) one gets analyticity of these points. As in Theorem1.2we prove only interior regularity, it is natural to work with localized Euler-Lagrange equations which look as follows, see Section7: Lemma 1.3(Euler-Lagrange Equations).LetuH2n(Rn)be a critical point ofEnon a domainDRn. ˜ Then, for any cutoff functionηC0(D),η1on an open neighborhood of a ballDDandw:=ηu, we have ˆwiΔn4wjΔ4nψij=ˆΔ4nwjH(wi, ψij)ˆaijψij,for anyψij=ψjiC0(D)˜,(1.7) RnRnRn whereaijL2(Rn),i, j= 1, . . . , m, depend on the choice ofη. Here, we adopt Einstein’s summation convention. Moreover,H(,)is defined onHn2(Rn)×Hn2(Rn)as H(a, b) := Δn4(ab)aΔn4bbΔ4na,fora, bH2n(Rn).(1.8) Furthermore,uSm1onDimplies the following structure equation wiΔn4wi=12H(wi, wi)1+Δ24nη2a.e. inRn.(1.9) Similar in its spirit to [DLR09] we use that (1.7) and (1.9) together control the full growth of Δn4w, though here we use a different argument applying an analogue of Hodge decomposition to show this, see below. Note moreover that as we have localized our Euler-Lagrange equation, we do not need further rewriting of the structure condition (1.9) as was done in [DLR09]. Whereas in (1.4) the compensation phenomenon stems from the structure of the right-hand side, here it comes from the leading order termH(,) appearing in (1.7) and (1.9be proved by Tartar’s approach [ can ). ThisTar85], using essentially only the following elementary “compensation inequality” similar in its spirit to (1.6) ||xξ|p− |ξ|p− |x|p| ≤Cp(||xx||p2p|ξ1||2pξ|,+|ξ|p1|x|,fiifpp>01(,,]1(..101) More precisely, we will prove in Section4 Theorem 1.4.ForHas in(1.8)andu, vH2n(Rn)one has kH(u, v)kL2(Rn)CkΔ4nukL2(Rn)kΔn4vkL2,(Rn). An equivalent compensation phenomenon was observed in the casen= 1 in [DLR09]1 that interpreting. Note again the terms of (1.10) as Fourier multipliers, it seems as if this equation (and as a consequence Theorem1.4) estimates the operatorH(u, v) by products of lower order operators applied touandv by “products of. Here, lower order operators” we mean products of operators whose differential order is strictly between zero andn2and where the two operators together give an operator of order2n fact, this is exactly what happens in special. In cases, e.g. if we take the casen= 4 where Δn4= Δ: H(u, v) = 2ru∙ ruifn= 4. Let us remark, that by an interpolation argument similar results are also a consequence of the “Leibniz rule” for fractional order derivatives obtained by Kato and Ponce, see [KP88] and [Hof98 Another, Corollary 1.2]. case we will need to control is the case whereu=Pis a polynomial of degree less than2n. As (at least formally) Δn4P= 0 this is to estimate Δ4n(P v)PΔ4nv. 1In fact, all compensation phenomena appearing in [DLR09] can be proven by our adaption of Tartar’s method using simple compensation inequalities, thus avoiding the use of paraproduct arguments (but at the expense of using the theory of Lorentz spaces).
8
  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents