Licence de mathématiques méthodes numériques pdfsubject

icon

11

pages

icon

Français

icon

Documents

Écrit par

Publié par

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

11

pages

icon

Français

icon

Ebook

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Publié par

Nombre de lectures

287

Langue

Français

in Supaéro h Vitae oulouse Y I v P es in Coudière ni  , Lab 2005 oratoi tic r y e oulouse). de mathematics Mathématiques concerning Jean Application Lera issues y nite ( PhD LMJL y ) 1999, Univ . ersité DEA de (T Nan Engineer tes My 2, engineering rue P de in la n Houssinière olume  curren BP called 92208 sim 44322 in Nan ds tes sup Ce Pierre dex tly F ort rance pro Tél the : of 02 ila 51 Villedieu. 12 Univ 5 aul 9 3) 18 - Yves.Coudiere@math.univ-nantes.f Supaéro r tro http://www.math.sciences.univ-na kground ntes.fr/~coudiere and 1) and Brief ersit Curriculum Sabatier, Vitae My Y are e appro ar analysis Position e since ds; 2001 CFD, Maître to de and Conférence tic at 3D N Curren an y tes is Univ olume ersit biomedical y as (UN), of Appli of e 2002 d I Math a team nancial of the LMJL for 2000 mathematical - Curriculum 2001 scien P direction ostdo J.P cto V ral and fello . w 1994 of from the ersit Inria P team Sabatier Sin oulouse us and (J.A. 1991 Desideri), 1994 Sophia from An- (T tip In olis. duction 2000 bac A is ter aeronautic at aerospace LA (Supaéro) TP applied , (Univ Aix-Marseil y le aul univ T ersit 3). y main (T. terests Gallouët, in R. PDE Herbin). ximation, 1999 umerical A of ter t at v GMM metho , Momme INSA to of and T tly oulo problems us biology e. medicine; Mem Scien b Computing er in of complex MIP ulations. (J.P tly . m Vila). main 1994 terest - in 1998 v Phd metho Student and at applications. Onera w - the Cert ervisor (T the oulouse). thesis Phd C. Thesis from from to Univ and ersit recen y get P 4 aul ear Sabatier supp (T from oulouse frenc 3) ANR obtained a in ject Jan uary under    ork and e v eld es problems, Coudièr and e the 2 there metho ds, ds y and electrical mo equations, dels ole for is the applied sim and ul o ation n of v the The electrical v b the eha olv viour a of v the sim heart T (see to next n section). this It to in re- v een olv site es Since in the teractions is with on researc ostdo hers on from aim v wnledge arious of elds, through lik ds. e t ph tegral ysiology diusion and ds medical al ima order ging. b It electro is pro a tes. eld w that on, I and am . already run in will v concerned olv ecially ed studen in terface to ds as wledge. a Finite mem Automatic b y e olume r con of The CS3D accurate , anisotropic a Y large with action p from ject Inria m concerning 2007 the i electro-mec our hani the c eha al heart mo patter deling mo of umerical the in heart, v and es as eqs, the and corresp tio ondng of mem umerical b e er fast-sw of fast-m the ds, GDR understand MaBeM the from viour the and CNRS MMCE (sup with ervised a b in y goal D. mathe- Bresc in h mo and appro E. a Grenier). tic In electro parallel en I is am y in a v op olv ards ed of in imaging, sev w eral hers academic who collab the oration et for e the wish n their um w e www.math.sciences.univ-nan rical olume analysis op of Renemen new started nite I v te olume ds m ximation e ection- tho mesh ds dicult for construct anisotropic robust and discretization heterogeneous heterogeneous diusion ery op 4 erators ears, and p c ctoral on ositions. v pro ection- starts diusion Dece problems b (F. r Hub and ert at  mpro Marseille, e M. kno Manzini of  the P b a viour via, the C. and Pierr ECG e ns,  mathematical P deling au); n and metho for It the v analysis es of arious the yp bidomain of equations Hamilton-Jacobi of in electro eqs cardiology re (Y. c Bourgault n-  systems Otta eqs; w n a). metho P lik art nite of olumes, m eeping y gorithms, researc ultip h metho w in ork to concerns and scien ulate tic electrical computing eha issues of : heart metho the dology cardiogram. , Conference to ogether ols this and ject, dev conference elopp organized emen Nan t Its of is n gather umerical maticians co orking des. the As of a delisati researc analysis, her, ximation, I umerical am nalysis in scien v computing o to lv cardiology ed Ev in though te conference a mainly c b hing mathematicians, graduate is studen strong ts of (Master) ening the w mathematics the of elds nite biology v medical olume esp metho to ds ards or searc mo and deli ts n w g on in in electroph b ysiology w . these 2) l Researc and h t A strengthen ctivities kno Momme The pro eb ject is I tes.fr/MMCE09 am V the Metho co Diusion ordinator erators, of Mesh the t ANR I pro m ject PhD, Momme studied (for i Métho v des metho et for MOdélisation appro Mathématiques of en v Éle diusion ctr with o adaptation. c main ar y diolo to gie an ). and It nite includes olume a of nancial and supp diusion o v r general t for nal problems. ol v een es 12 Coudièr to e started 3 elec meshes. nite It mo has the v t ari e ous ctoral applications tly for in instance the to , CFD new wi is t Mo h scien automatic ust mesh explicit renemen w t, Systems to of p fa orous jects media a problems and (v clinical ery on anisotropic, y hete b rog e e with neous, solutions with published quite tly irregular op meshe Biology s) m and s also large, to for cardiac [ sim me-de ulation e- (anisotropic, condition heterogeneous, up with in v electrical ery m irregular with meshes ha as of obtained . from er medical fo imagi deling n applications g s ) My . electro I n dev bidomain elop ergence ed d a v new ] approac practicals h 24 to . the existen computation equations of ] complex . n W umerical a uxes bidomain of sym diusion, tic that actual is mo called necessitates the ols. Diamond accoun Scheme de . system The size n piecewise umerical ximation) analysis ] of of this endan family results of explains metho b d to ha in v manner. e Equat b cardiology ee study n eha carried heart out p in erio [ Desideri. 9 , , e 8 collab , Inria 6 and ], am where mem v CS3D arious ject err on o hanical r the estimates c are I pro olv v arious ed, industrial esp er ecially ork on fo AMR theoretical m study e domain shes. Stabili During con m of y olume p v ost-do en ctoral [ p , erio C. d resulting at ols Sophia-An 23 tip 18 olis, Sermesan I dditionally ha of v for e the also quite b [ e b en Y. w Y. orking collab with are A. orking Dervieux theoretical on compare anisotropic mono vs using isotropic olic mesh and renemen puting t. Medicine W computation e to pro of v o ed and that computing anisotropic 3D renemen necessary t for ma ionic y s; b but e equations nece -step. ssary solv to e reco constan v appro er in a 7 correct for con discretization v ti ergence p rate t of The n esp umerical cially appro ho ximations the [ oundary 5 has ]. b In discretized the an con wind text Reaction-diusion of of electro ions cardiology Electro , I I to dev the elop b ed viour during the the during PhD y of ostdo C. p Pierre d a J.A. new So 3D r nite I v v olume b metho a d orator for the anisotropic pro heterogeneous Icema diusion Icema-2 [ I 16 curren ]. a I b am of curren , tly pro impro that ving cuses this the 3D tro-mec m mo e of tho heart d clini with al F. thereof. Hub t ert v in e [ v 31 academic, ] and where partners. ni p c so e w results in of cardiology con cuses v the ergence and and umerical error of estimates mono are and exp equations. ected, t and and using v it results in a the v con metho text ha of e con e v pro ection-diusion ed with 4 M. 20 Manzini 16 [ with 2 Pi ]. rre, Finite in V to olume [ Metho , ds, , Hyp , erb ] olic M. Systems t of A Equations a I pro ha of v ce e global also to b bidomain een for w general orking dels during 3 m has y een Ph with D Bourgault on Pr. linear Bourgault symmetric regular h orator. yp e erb curren o w lic on systems new of to equations to (Maxw the ell's and or domain acoustics' erators, e some qs. b ) computations. on deling a Scien b Com ounded in domain. and I The in 3D tro of duce solution d realistic new dels pro the ofs y of cardium n complex umerical sophisticated stabilit tic y to and Fine optimal meshe con are v to ergence t rate up ( date Y mo e l tim a h sparse eac ill-conditioned at of ed m on b meshes of a 1/2O(h ) h new D With v used es for Coudièr e e B 4 dev I svn.math.cnrs.fr/MOMME c problems ho the ose [ t c w erimen o a strategies dev to are tac has kle W these supp diculties n : of construct ork in Pierre, termediate bidomain mo b dels, y and , using otheses mo h dern pro tec a hnical within to through ols G. of th scien as tic orking computing. metho Hence er I Pro sup This ervised ] the y p hospital ostdo n ctoral the p elopp erio the d , of also C. op Olah of (2007) to) on [ the n idea lidate of of POD v (Prop last, er also Orthogonal w Decomp 3D osition) the as s a program. reduction the mo ersion del 19 tec P hnique vited to I obtain in preconditioners. professor It e is to w DFV ork ], in Grupp progress Scientic for (LA whic w h 3D results supp are [ exp P ected. of The to, most oks simplied v mo v dels of are ]. Eik of onal e equations, a that de simply of m [ o ]. del de the een propagation M. of of the oph activ Univ ation T fron an t framew in , the ] bidomain results system v of h reaction the di propagation  es usi tricular on A equations. w W t e of successfully Momme used aim it ing in f a ork clinical tation con de text metho where researc real-time soft computation accessible is b needed sub [ rv 11 Collab , oration 10 (CNR-IMA ]. via). Finite een V 1 olume Nan discretizations en and mon F a ast in Marc July hing ha and een more the recen v tly the F v ast [ Sw the eeping of algorithms Nationale are Calc of . great Hub in , terest ence), in on this analysis con metho text. oration The b c MoMas hallenge , concerning With these (Departmen tec Bioph hniques Univ is T to alth use SunnnyBr unstructured W v I ery some irregular progress 3D of meshes sim and bidomain to , so Y lv PhD e C. anisotropic w equations. dev In ed parall 3 e co l for , solution with the R. equations T 29 urpault 15 (LMJL), The w o e has are b w used orking y on P in (Dep. te Medical rmediate i mo ysics dels the using ersit either of mo oron died in mono exp domain tal equations ork or 17 Eik 18 onal
Voir Alternate Text
  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents
Alternate Text