Search for cosmic point sources of high energy neutrinos with the AMANDA-II detector [Elektronische Ressource] / von Tonio Hauschildt
126 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Search for cosmic point sources of high energy neutrinos with the AMANDA-II detector [Elektronische Ressource] / von Tonio Hauschildt

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
126 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

Search for Cosmic Point Sources of High EnergyNeutrinos with the AMANDA-II DetectorD I S S E R T A T I O Nzur Erlangung des akademischen Gradesdoctor rerum naturalium(Dr. rer. nat.)im Fach Physikeingereicht an derMathematisch-Naturwissenschaftlichen Fakult at IHumboldt-Universit at zu BerlinvonDipl.-Phys. Tonio Hauschildtgeboren am 10.04.1975 in HamburgPr asident der Humboldt-Universit at zu Berlin:Prof. Dr. Jur gen MlynekDekan der Mathematisch-Naturwissenschaftlichen Fakult at I:Prof. Thomas Buckhout, PhDGutachter:1. Prof. Dr. Hermann Kolanoski2. Prof. Dr. Nikolaj Pavel3. Prof. Dr. Lutz K opkeeingereicht am: 7. April 2004Tag der mundlic hen Prufung: 15. Oktober 2004AbstractWe describe the search for astrophysical sources of high energy neutrinoswith the AMANDA-II detector. This detector allows for reconstructionof neutrino induced muon tracks by the Cherenkov radiation emitted byrelativistic muons.WeanalyzetheAMANDA-IIdatarecordedintheyear2000withalifetimeof 197 days. A large fraction of the background of atmospheric muons canbe suppressed by the selection of events reconstructed as upward movingtracks. We develop further quality criteria, which lead to the extractionof a sample of 699 neutrino event candidates, dominated by atmosphericneutrinos.

Sujets

Informations

Publié par
Publié le 01 janvier 2004
Nombre de lectures 18
Langue English
Poids de l'ouvrage 5 Mo

Extrait

Search for Cosmic Point Sources of High Energy
Neutrinos with the AMANDA-II Detector
D I S S E R T A T I O N
zur Erlangung des akademischen Grades
doctor rerum naturalium
(Dr. rer. nat.)
im Fach Physik
eingereicht an der
Mathematisch-Naturwissenschaftlichen Fakult at I
Humboldt-Universit at zu Berlin
von
Dipl.-Phys. Tonio Hauschildt
geboren am 10.04.1975 in Hamburg
Pr asident der Humboldt-Universit at zu Berlin:
Prof. Dr. Jur gen Mlynek
Dekan der Mathematisch-Naturwissenschaftlichen Fakult at I:
Prof. Thomas Buckhout, PhD
Gutachter:
1. Prof. Dr. Hermann Kolanoski
2. Prof. Dr. Nikolaj Pavel
3. Prof. Dr. Lutz K opke
eingereicht am: 7. April 2004
Tag der mundlic hen Prufung: 15. Oktober 2004Abstract
We describe the search for astrophysical sources of high energy neutrinos
with the AMANDA-II detector. This detector allows for reconstruction
of neutrino induced muon tracks by the Cherenkov radiation emitted by
relativistic muons.
WeanalyzetheAMANDA-IIdatarecordedintheyear2000withalifetime
of 197 days. A large fraction of the background of atmospheric muons can
be suppressed by the selection of events reconstructed as upward moving
tracks. We develop further quality criteria, which lead to the extraction
of a sample of 699 neutrino event candidates, dominated by atmospheric
neutrinos. We analyze this data sample in view of signi cant contributions
from neutrino point sources, which would be observable as enhancements of
the event density from certain directions.
Wehavenotfoundasigni cantindicationoftheexistenceofastrophysical
high energy neutrino sources, neither by the investigation of source candi-
dates (e.g. Active Galactic Nuclei, microquasars, or supernova remnants),
norbyabinnedsearchinthecompleteNorthernsky,norbytheinvestigation
of angular distances between pairs of reconstructed event directions.
2Assuming power-law neutrino spectra d /dE ∝E , we calculate lim-
its on the neutrino uxes and the neutrino induced muons uxes from a list
of selected neutrino source candidates. The sensitivity of the AMANDA-
II detector, i.e. the average neutrino and muon ux limits, amounts to
2 7 2 1 15 2 2E d /dE 210 GeV cm s and 210 cm s , respec-
tively. These are currently the best limits on neutrino uxes from astro-
physical objects in the Northern hemisphere.
Keywords:
AMANDA, neutrinos, astroparticle physics, point sourcesZusammenfassung
DieseArbeitbefasstsichmitderSuchenachastrophysikalischenPunktquel-
len hochenergetischer Neutrinos mit Hilfe des AMANDA-II-Detektors. Der
AMANDA-Detektor erlaubt die Rekonstruktion neutrino-induzierter Myo-
nen durch die Detektion des von diesen Myonen emittierten Cherenkov-
Lichts.
Es wird der Datensatz des Jahres 2000 mit einer e ektiven Datennah-
mezeit von 197 Tagen analysiert. Nach der Unterdruckung eines wesentli-
chen Teils des Untergrundes atmospharischer Myonen durch Selektion als
aufwarts laufend rekonstruierter Ereignisse werden weitere Selektionskrite-
rien entwickelt, um einen Datensatz herauszu ltern, der von durch atmo-
spharischeNeutrinosinduziertenMyonendominiertist.Diese699Ereignisse
werden im Hinblick auf signi kante Beitr age von Punktquellen untersucht,
d.h.aufUberschusse derEreigniskonzentrationausbestimmtenRichtungen.
WederdieBetrachtungeinerAuswahlmoglicherNeutrinoquellen(z.B.ak-
tive galaktische Kerne, Mikroquasare oder Supernova-Uberreste), noch eine
SucheamgesamtenNordhimmeldurchdiePlatzierunguberlappenderSuch-
fenster, noch die Untersuchung der Raumwinkel-Abstand e zwischen Paaren
selektierter Ereignisse ergeben einen signi kanten Hinweis auf die Existenz
von Quellen astrophysikalischer hochenergetischer Neutrinos.
2Unter der Annahme eines Neutrinospektrums d /dE ∝ E werden
Flussgrenzen fur die Neutrino-Flusse der ausgewahlten Quellenkandidaten
sowie fur die neutrino-induzierten Myon usse angegeben, die im Mittel bei
2 7 2 1der Sensitivitat von E d /dE 2 10 GeV cm s bzw.
15 2 2210 cm s liegen. Dies sind zur Zeit die besten Grenzen fur die Neu-
trino usse von astrophysikalischen Quellen in der nordlichen Hemisphare.
Schlagworter:
AMANDA, Neutrinos, Astroteilchenphysik, PunktquellenAcknowledgments
I want to thank Prof. Dr. Hermann Kolanoski for taking the responsibility
for this thesis and for his interest in an analysis not directly related to
his usual research topics. I thank Dr. Christian Spiering for many fruitful
discussions, for all the support during my work at DESY Zeuthen and of
course for the opportunity to work in the AMANDA collaboration.
Dr. Marek Kowalski pointed me to the AMANDA experiment and pro-
vided valuable ideas to di erent AMANDA analyses. In addition to discus-
sing physics and technical questions. Sebastian Boser repeatedly managed
to organize recreational activities within the Zeuthen AMANDA group. Dr.
Alexander Biron introduced me to the interesting topic of my analysis. Also
the other diploma and PhD students, the post-docs, and the sta members
of the AMANDA group in Zeuthen made the work very pleasant and often
helped with discussions and encouragement: Markus Ackermann, Dr. Elisa
Bernardini,Dr.DavidBoersma,Dr.RolfNahnhauer,Dr.StefanSchlenstedt,
Jutta Stegmaier, and Henrike Wissing.
It was a pleasure to work in close cooperation with David Steele from
Madison.AllmembersoftheAMANDAcollaborationcreatedaveryfriendly
and e cient working atmosphere and made the collaboration meetings as
well as the intense working periods at the South Pole enjoyable.
Finally I thank my family and all my friends for their patience during
more than three years and for all kinds of support.
ivContents
1 Introduction 1
2 Sources of high energy neutrinos 3
2.1 Fermi acceleration . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Active Galactic Nuclei . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Microquasars . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Supernova Remnants . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Pulsars. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.6 Individually selected neutrino source candidates . . . . . . . . 11
2.7 Further neutrino source candidates . . . . . . . . . . . . . . . 12
2.7.1 Gamma Ray Bursts . . . . . . . . . . . . . . . . . . . 12
2.7.2 WIMP annihilation. . . . . . . . . . . . . . . . . . . . 12
2.8 Atmospheric muons and neutrinos . . . . . . . . . . . . . . . 13
3 Neutrino Detection 14
3.1 Interaction of neutrinos with nucleons . . . . . . . . . . . . . 14
3.2 Vacuum oscillation of neutrinos . . . . . . . . . . . . . . . . . 17
3.3 Muon propagation . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.1 Muon scattering . . . . . . . . . . . . . . . . . . . . . 19
3.4 Cherenkov radiation . . . . . . . . . . . . . . . . . . . . . . . 20
3.5 The AMANDA detector . . . . . . . . . . . . . . . . . . . . . 21
4 Event simulation 26
4.1 Event generation . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.1.1 Neutrino simulation . . . . . . . . . . . . . . . . . . . 26
4.1.2 Atmospheric muon simulation . . . . . . . . . . . . . . 27
4.1.3 Muon propagation . . . . . . . . . . . . . . . . . . . . 27
4.2 Detector simulation. . . . . . . . . . . . . . . . . . . . . . . . 28
5 Limit calculation and detection probability 29
5.1 Limits and sensitivities . . . . . . . . . . . . . . . . . . . . . . 29
5.1.1 Limits in the presence of systematic uncertainties . . . 32
5.2 Detection probabilities . . . . . . . . . . . . . . . . . . . . . . 33
5.3 Binned point source searches . . . . . . . . . . . . . . . . . . 34
v6 Event reconstruction and selection 38
6.1 Low level reconstruction . . . . . . . . . . . . . . . . . . . . . 38
6.1.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . 39
6.1.2 Fast reconstruction . . . . . . . . . . . . . . . . . . . . 43
6.2 Likelihood reconstruction . . . . . . . . . . . . . . . . . . . . 44
6.3 High level cuts . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.3.1 Neural network . . . . . . . . . . . . . . . . . . . . . . 51
6.4 Cut optimization . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.5 Possible improvements . . . . . . . . . . . . . . . . . . . . . . 58
6.5.1 Training with experimental data . . . . . . . . . . . . 60
6.5.2 Training with varying signal and background contri-
butions . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.5.3 Varying the teaching output function. . . . . . . . . . 60
6.5.4 Adding energy dependent cuts . . . . . . . . . . . . . 61
6.6 Systematic uncertainties . . . . . . . . . . . . . . . . . . . . . 61
6.6.1 Atmospheric neutrino ux . . . . . . . . . . . . . . . . 61
6.6.2 Ice properties . . . . . . . . . . . . . . . . . . . . . . . 63
6.6.3 OM sensitivity . . . . . . . . . . . . . . . . . . . . . . 64
6.6.4 Interpolation between simulated declinations . . . . . 64
6.6.5 Simulation accuracy of NN input variables . . . . . . . 64
6.6.6 Muon propagation . . . . . . . . . . . . . . . . . . . . 67
6.6.7 Calibration uncertainties. . . . . . . . . . . . . . . . . 68
6.6.8 Scattering angle between muon and neutrino . . . . . 68
6.6.9 Statistical error on the number of background events . 69
6.6.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 69
7 Characteristics of the event selection 71
7.1 E ective area . . .

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents