Synthesis and technological processing of hybrid organic-inorganic materials for photonic applications [Elektronische Ressource] / vorgelegt von Pélagie Declerck
184 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Synthesis and technological processing of hybrid organic-inorganic materials for photonic applications [Elektronische Ressource] / vorgelegt von Pélagie Declerck

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
184 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

Synthesis and technological processing of hybrid organic-inorganic materials for photonic applications Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Julius-Maximilians-Universität Würzburg vorgelegt von Pélagie Declerck aus Chambray-lès-Tours, Frankreich Würzburg 2010 i. Index of abbreviations.………………………………………...……………………..…….5 ii. Definitions……………………………………………………………...……………..……7 ii.1 Water ratio r………………..…………………….………………………...………..…...7 ii.2 NMR notations for silicon species……………….……………..…………......…………7 13 1ii.3 NMR notations for C and H………….…………….………...…..……...……………8 11. Introduction……………..……………………………...…………………….…9 2. Theoretical background…………..………………………………..………..12 2.1 Sol-gel process……..……………………...…………………………….………...12 2.1.1 Background of the sol-gel chemistry……………………………….....…….…...13 2.1.1.1 Chemical reactions…………………………………………………..………..……13 2.1.1.2 Chemical reactivity of metal alkoxides………………...…………….…....………14 2.1.2 Hybrid organic-inorganic materials……….………………………..…………..16 2.1.2.1 Class I materials………………..…………..………………………………………17 2.1.2.2 Class II materials…………………………………………………..…………..…..19 2.1.3 Organically modified silicon alkoxides…………………………..……...………22 2.1.3.1 Organic-inorganic hybrid polymeres..………………………………………..……22 2.1.3.2 Organically modified silicon alkoxides and transition metal alkoxides.….....…….25 2.2 Refractive index………………………………………….....…………………….27 2.2.

Informations

Publié par
Publié le 01 janvier 2010
Nombre de lectures 25
Langue English
Poids de l'ouvrage 3 Mo

Extrait

Synthesis and technological processing of hybrid
organic-inorganic materials for photonic
applications






Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades
der
Julius-Maximilians-Universität Würzburg


vorgelegt von
Pélagie Declerck



aus Chambray-lès-Tours, Frankreich


Würzburg 2010





i. Index of abbreviations.………………………………………...……………………..…….5
ii. Definitions……………………………………………………………...……………..……7
ii.1 Water ratio r………………..…………………….………………………...………..…...7
ii.2 NMR notations for silicon species……………….……………..…………......…………7
13 1ii.3 NMR notations for C and H………….…………….………...…..……...……………8
11. Introduction……………..……………………………...…………………….…9
2. Theoretical background…………..………………………………..………..12
2.1 Sol-gel process……..……………………...…………………………….………...12
2.1.1 Background of the sol-gel chemistry……………………………….....…….…...13
2.1.1.1 Chemical reactions…………………………………………………..………..……13
2.1.1.2 Chemical reactivity of metal alkoxides………………...…………….…....………14
2.1.2 Hybrid organic-inorganic materials……….………………………..…………..16
2.1.2.1 Class I materials………………..…………..………………………………………17
2.1.2.2 Class II materials…………………………………………………..…………..…..19
2.1.3 Organically modified silicon alkoxides…………………………..……...………22
2.1.3.1 Organic-inorganic hybrid polymeres..………………………………………..……22
2.1.3.2 Organically modified silicon alkoxides and transition metal alkoxides.….....…….25
2.2 Refractive index………………………………………….....…………………….27
2.2.1 Refractive index of materials……………………………..……………………...27
2.2.1.1 Inorganic oxidic materials………………………………...…...…………………..27
2.2.1.2 Organic materials……………………………………...…………………..….……29
2.2.1.3 Organic-inorganic hybrid polymers………………...………………………….…..34
2.2.2 Refractive index measurement………………………………………..…………36
2.2.2.1 Abbé refractometer………………………………………………………..……….37
2.2.2.2 Prism coupler…………………………………………………………………..…..37
2.2.2.3 Ellipsometry………………………..……………..………………………..………38
2.2.2.4 Transmission spectroscopy……………………………………...…………...…….40
2.3 Photon-induced organic polymerization………………………………..……….42
2.3.1 One-photon polymerization process…………………...……………..…………43
2.3.2 Two-photon polymeriza……………………...….…….…………....47
3. Experimental part……………………………….…………..……..…………51
3.1 Methods and instrumentation……………………………………..…………….51
3.1.1 Nuclear magnetic resonance spectroscopy (NMR) in solution…….….……….51
313.1.2 P solid-state Magic Angle Spinning NMR………….……………………..…..52
23.1.3 Fourier-transform infrared spectroscopy…………………………..……...…...52
3.1.4 Micro-Raman spectroscopy…………………………………………………..….52
3.1.5 Ultraviolet, visible, and near-infrared spectroscopy………………………..….53
3.1.6 Ellipsometry……………………………………..………………………………..53
3.1.7 X-ray diffraction……………..…………………………………………………...53
3.1.8 Profilometry...…………….………...…………………………………………….54
3.1.9 Scanning-electron microscopy…………………………………..……………….54
3.1.10 Optical Microscopy……………………………………..………………………..54
3.2 Syntheses of inorganic-organic hybrid materials…………………………...….54
3.2.1 Solvents and chemicals…….…………………………………….….……………54
3.2.2 Resins synthesized without complexing ligands…….…………………………..55
3.2.2.1 Resins synthesized with one organo-alkoxysilane………………………..……….55
3.2.2.2 Resins synthesized with two organo-alkoxysilanes…………………………......…56
3.2.3 Complexed titanium alkoxide and organo-alkoxysilanes-based resins……….57
3.2.4 Resins based on organophosphorus precusors…………………………...……..58
3.3 Technological processing…………………………………………………..……..59
3.3.1 Coatings without UV exposure.……………………...…………………….…….59
3.3.2 ith UV exposure…...……………...…………...………………..…….63
4. Results and discussion…………………………………………………..……71
4.1 Charaterization of the resins…………………………………………..………...71
4.1.1 Characterization of the organo-alkoxysilanes by multi-nuclei NMR
spectroscopy……………………………..……………………………………..…71
4.1.1.1 [3-(Methacryloyloxy)propyl]trimethoxysilane and
styrylethyltrimethoxysilane…………………………………………………....…..71
4.1.1.2 The alkoxy exchange reaction…………..…………………………………………75
4.1.1.3 Hydrolysis reactions of [3-(methacryloyloxy)propyl]trimethoxysilane and
styrylethyltrimethoxysilane…………..………………………………....……...….79
4.1.2 Resins synthesized without complexing ligand……………………………..…..84
4.1.2.1 Resins synthesized with one organo-alkoxysilane………………..……...….…….84
34.1.2.1.1 [3-(methacryloyloxy)propyl]trimethoxysilane used as organo-alkoxysilane…..….84
4.1.2.1.2 Styrylethyltrimethoxysilane used as organo-alkoxysilane……………………..…..96
4.1.2.2 Resins based on three components……………………..………………………...106
4.1.2.2.1 [3-(methacryloyloxy)propyl]trimethoxysilane used as polymerizable organo-
alkoxysilane…………………………………………………………..…………..106
4.1.2.2.2 Styrylethyltrimethoxysilane used as polymerizable organo-alkoxysilane……..…113
4.1.3 Resins with complexing ligand…………………………………………………115
4.1.3.1 Synthesis based on titanium precursor chelated with acetylacetone……………..115
4.1.3.2 oxo-cluster used as precursor………………………116
4.1.4 Resins containing organophosphorus precursors……………………………..121
4.1.5 Discussion of the synthesized resins….…………………………….…...……...128
4.2 Patterning of the resins…………………………………………………………131
4.2.1 The UV lithography process……………………………………………………131
4.2.1.1 Resins based on low titanium content……………………………………………132
4.2.1.2 Resins based on high titanium content….………..………………………………145
4.2.1.3 Resins containing complexing ligands………………………………………..….155
4.2.1.4 Resins containing organo-phosphorus precursors……………………….…….…157
4.2.2 The two-photon absorption process……………………………………………158
5. Summary……………………………………………………...………………..163
6. Summary in German……………………..…………………………………166
7. References……………...………………………………………………………169
8. Annex……………………………………………………………….….……….179
8.1 Annex 1: Other resins synthesized during this work ……………..…….……179
8.2 Annex 2: Calculation of k and k’………………………………………….……182
8.2 Annex 3: Emission spectra of the lamp from the mask aligner………………183
4i. Index of abbreviations
2PP two-photon polymerization
3D three-dimensional
ACAC acetylacetone
AIBN 2,2-azobisisobutyronitril
AOM acousto-optical modulator
APTMS acryloxypropyltrimethoxysilane
BAF 9,9-bis(4-aminophenyl) fluorine
BAPS 2,2-bis(4-[4-aminophenoxy]phenyl)sulfone
BPADA bisphenol A dianhydride
BS beam splitter
BU butanone
CCD charge-coupled device
CL complexing ligand
CTE coefficient of thermal expansion
Eq. equation
dB decibel
DC degree of conversion
DEPT distortionless enhancement by polarization transfer
dil. dilution
DLW direct laser writing
DMDMS dimethyldimethoxysilane
DMDES d imethyldiethoxysilane
DPD diphenylsilanediol
DPDMS diphenyldimethoxysilane
DPPA diphenylphosphinic acid
DPDM S diphenyldimethoxysilane
ECET [2-(3,4-epoxycyclohexyl)ethyl]trimetoxysilane
FT- Fourier-transform
GLYMO 3-(glycidyloxypropyl)trimethoxysilane
HSP Hansen solubility parameters
ID idendification numbers
IR infrared
ISC Fraunhofer-Institut für Silicatforschung, Würzburg
5LO longitudinal optical
MA methacrylic acid
MAS-NMR Magic angle spinning nuclear magnetic resonance
MAEAA 2-(methacryloyloxy)ethyl acetoacetate
MEMO [3-(methacryloyloxy)propyl]trimethoxysilane
MEMS microelectromechanical system(s)
MEPA 2-(methacryloyloxy)ethyl phosphate
mol-% molar percentage
MP 4-methyl-2-pentanone
no. number
NA numerical aperture
n.d. not determined
NIR near-infrared
NMR nuclear magnetic resonance
ODA oxydianiline
PA propylacetate
PC photonic crystal
PMDA pyromellitic dianhydride
PMMA polymethylmethacrylate
PPA phenylphosphonic acid
ppm parts per million
p-VBPA para-vinylbenzylphosphonic acid
ref. reference
RIE reactive ion etching
SEM scanning electron microscopy
SETMS styrylethyltrimethoxysilane
SMDES styrylmethyldiethoxysilane
TBAF tetrabutylammonium fluoride hydrate
TEOS tetraethoxysilane
THF tetrahydrofurane
Ti(OBu) titanium butoxide 4
Ti(OEt) titanium ethoxide 4
iTi(OPr ) titanium isopropoxide 4
Ti(OMe) titanium methoxide 4
Ti(OPr) titanium propoxide 4
6TM transition metal
TMO tmetal oxide
TMS tetramethylsilane
TO transversal optical
UV ultraviolet
VIS visible
WP wave plate
wt.-% weight percent
Zr(OEt) zirconium ethoxide 4
Zr(OPr) zirconium propoxide 4

ii. Definitions
ii.1 Water ratio r
In order to perform hydrolysis reactions necessary for some of the syntheses, water was added
directly or mixed with the catalyst e.g. hydrochloric acid. The water content used in the
syntheses is defined by the water ratio r. It is equal to the molar quantity of water added with
respect to the molar quantity of water needed for a complete condensation reaction. For
example, in a mixture based on 1 mol [3-(methacryloyloxy)propyl]trimethoxysilane
(MEMO) and 1.5 mol H O, the water ratio is equal to 1. 2
For titanium, the coordination number may range from 4 to 6. Within the framework of this
thesis, the calculation of the water r

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents