Synthesis of fluorinated polymers in supercritical carbon dioxide (scCO_1tn2) [Elektronische Ressource] / von Muhammad Imran ul-Haq
123 pages
English

Synthesis of fluorinated polymers in supercritical carbon dioxide (scCO_1tn2) [Elektronische Ressource] / von Muhammad Imran ul-Haq

Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres
123 pages
English
Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres

Description

Synthesis of fluorinated polymers in supercritical carbon dioxide (scCO ) 2This work is licensed under a Creative Commons License: Attribution - Noncommercial - No Derivative Works 3.0 Unported To view a copy of this license visit http://creativecommons.org/licenses/by-nc-nd/3.0/ Online published at the Institutional Repository of the Potsdam University: http://opus.kobv.de/ubp/volltexte/2008/1986/ urn:nbn:de:kobv:517-opus-19868 [http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-19868] Universität Potsdam Arbeitsgruppe Prof. Sabine Beuermann Synthesis of fluorinated polymers in supercritical carbon dioxide (scCO ) 2 Dissertation zur Erlangung des akademischen Grades "doctor rerum naturalium" (Dr. rer. nat.) in der Wissenschaftsdisziplin "Polymerchemie" eingereicht an der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Potsdam von Muhammad Imran ul-haq aus Gujrat, Pakistan Potsdam, im Juni 2008 The following research work has been done from June 2005 to June 2008 at the Georg-August University of Göttingen, Göttingen and University of Potsdam in Potsdam/Golm, Germany. Referent: Prof. Dr. Sabine Beuermann Korreferent. 1: Prof. Dr. Jan Meuldijk Korreferent. 2: Prof. Dr. Markus Busch Tag der mündlichen Prüfung: 07.08.

Informations

Publié par
Publié le 01 janvier 2008
Nombre de lectures 85
Langue English
Poids de l'ouvrage 24 Mo

Extrait

Synthesis of fluorinated polymers in supercritical carbon dioxide
(scCO ) 2This work is licensed under a Creative Commons License:
Attribution - Noncommercial - No Derivative Works 3.0 Unported
To view a copy of this license visit
http://creativecommons.org/licenses/by-nc-nd/3.0/










































Online published at the
Institutional Repository of the Potsdam University:
http://opus.kobv.de/ubp/volltexte/2008/1986/
urn:nbn:de:kobv:517-opus-19868
[http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-19868] Universität Potsdam
Arbeitsgruppe Prof. Sabine Beuermann




Synthesis of fluorinated polymers in supercritical
carbon dioxide (scCO ) 2









Dissertation
zur Erlangung des akademischen Grades
"doctor rerum naturalium"
(Dr. rer. nat.)
in der Wissenschaftsdisziplin "Polymerchemie"








eingereicht an der
Mathematisch-Naturwissenschaftlichen Fakultät
der Universität Potsdam




von
Muhammad Imran ul-haq
aus Gujrat, Pakistan




Potsdam, im Juni 2008
The following research work has been done from June 2005 to June 2008 at the
Georg-August University of Göttingen, Göttingen and University of Potsdam in
Potsdam/Golm, Germany.





























Referent: Prof. Dr. Sabine Beuermann
Korreferent. 1: Prof. Dr. Jan Meuldijk
Korreferent. 2: Prof. Dr. Markus Busch
Tag der mündlichen Prüfung: 07.08.2008 Table of contents

1. Abstract 1

2. Introduction 3
2.1 Supercritical carbon dioxide scCO 3 2
2.2 Polymer synthesis and scCO 5 2
2.3 Fluoropolymers and scCO 6 2
2.4 Supercritical CO in the production of nano-size particles 8 2
2.5 Rapid expansion of supercritical solution (RESS) 9
2.6 Objectives of this work 10

3. Theoretical background 12
3.1 Ideal polymerization kinetics 12
3.2 Transfer reactions 14

4. Experimental techniques 16
4.1 High pressure apparatus 16
4.1.1 Optical high-pressure cell 16
4.1.2 Heating and temperature control 17
4.1.3 Experimental set-up for polymerizations in scCO 17 2
4.1.4 High pressure mixing autoclave 18
4.1.5 FT-IR/NIR spectrometer 20
4.1.6 Phase behaviour setup and measurements 20
4.1.7 RESS set-up 20
4.2 Characterization techniques 21
4.2.1 Size-Exclusion Chromatography 21
4.2.2 Nuclear Magnetic Resonance 22
4.2.3 ESI-MS Spectrometer 21
4.2.4 Scanning Electron Microscopy 22
4.2.5 Atomic Force Microscopy 22
4.2.6 Wide Angle X-ray Diffraction 22
4.2.7 Differential Scanning Calorimetry 22 4.2.8 Spectroscopic observations (FT-NIR) 22

5. Experimental part 24
5.1 Materials 24
5.2 Experimental Procedure 25
5.2.1 Phase behaviour experiments 25
5.2.2 VDF polymerization in scCO 252
5.2.3 VDF polymerization using CTAs 26
5.2.4 End-functionalization of PVDF-I 26
5.2.5 RESS process 27

6. Results and Discussion 28
6.1 Homogeneous phase polymerization 28
6.1.1 Phase behaviour analysis 28
6.1.2 FT-NIR Spectroscopic Observations 29
6.1.3 MW control via initiation 31
6.1.4 Variation of monomer concentration 34
6.1.5 Microstructure of PVDF 35
6.1.6 Morphology of PVDF 36
6.1.7 Summary of results 37
6.2 Molecular weight control via degenerative transfer using
Perfluorinated hexyl iodide (PFHI) 39
6.2.1 NIR spectroscopy and conversion 39
6.2.2 Effect of perfluorinated hexyl iodide concentrations 40
6.2.3 Living nature of polymerization 42
6.2.4 Rate of polymerization 43
6.2.5 Application of iodide end groups towards click chemistry 47
6.2.6 Summary of results 53
6.3 Bromotrichloromethane as chain transfer agent 54
6.3.1 Variation of chain transfer agent concentration 54
6.3.2 Rate of polymerization and CTA concentration 55
6.3.3 Summary of results 57
6.4 Polymerization in the presence of perfluorinated hexyl bromide
and 1H-perfluorohexane 58
6.4.1 Molecular weight Control via employing CF -(CF ) -X 58 3 2 516.4.2 End groups analyses via H-NMR spectroscopy 60
6.4.3 Chain transfer constants of CF -(CF ) -X 62 3 2 5
6.4.4 Effect of CF -(CF ) -X concentrations on rate of polymerization 63 3 2 5
6.4.5 Summary of results 67
6.5 Polymer end group effect on morphology and crystallization of PVDF 68
6.5.1 Polymer samples for analyses 68
6.5.2 Positive ESI-MS analyses of PVDF 69
16.5.3 End groups analyses via H-NMR spectroscopy 72
6.5.4 Morphology of different PVDF samples 74
6.5.5 DSC and crystallinity 78
6.5.6 Polymorphs of PVDF and FT-IR analyses 82
6.5.7 Wide angle X-ray diffraction: (WAXD) 84
6.5.8 AFM images of PVDF 86
6.5.9 Summary of results 88
6.6 Rapid expansion of supercritical solution (RESS) for PVDF 89
6.6.1 Effect of RESS process on MW of PVDF 89
6.6.2 Particle formation 90
6.6.3 Influence of polymer MW on particle size and distributions 91
6.6.4 er end groups on particle size distributions 94
6.6.5 Summary of results 96

7. Summary and conclusions 98
8. List of abbreviations 102
9. Acknowledgements 105
10. Publications 107
11. Literature 109
Curriculum Vitae














Dedicated to my family and friends1. Abstract 1
1. Abstract
For the first time stabilizer-free vinylidene fluoride (VDF) polymerizations were carried out in
homogeneous phase with supercritical CO . Polymerizations were carried out at 140°C, 1500 2
bar and were initiated with di-tert-butyl peroxide (DTBP). In-line FT-NIR (Fourier
Transform- Near Infrared) spectroscopy showed that complete monomer conversion may be
obtained. Molecular weights were determined via size-exclusion chromatography (SEC) and
1polymer end group analysis by H-NMR spectroscopy. The number average molecular
4 −1weights were below 10 g·mol and polydispersities ranged from 3.1 to 5.7 depending on
DTBP and VDF concentration. To allow for isothermal reactions high CO contents ranging 2
from 61 to 83 wt.% were used. The high-temperature, high-pressure conditions were required
for homogeneous phase polymerization. These condition

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents