//img.uscri.be/pth/4373fde0e085668dc683c1199deca561da3500e1
Cette publication ne fait pas partie de la bibliothèque YouScribe
Elle est disponible uniquement à l'achat (la librairie de YouScribe)
Achetez pour : 526,44 € Lire un extrait

Téléchargement

Format(s) : PDF

avec DRM

Micro- and Opto-Electronic Materials and Structures: Physics, Mechanics, Design, Reliability, Packaging

De

Micro- and Opto-Electronic Materials and Structures: Physics, Mechanics, Design, Reliability, Packaging is the first comprehensive reference to collect and present the most, up-to-date, in-depth, practical and easy-to-use information on the physics, mechanics, reliability and packaging of micro- and opto-electronic materials, assemblies, structures and systems. The chapters in these two volumes contain summaries of the state-of-the-art and present new information on recently developed important methods or devices.   Furthermore,  practical recommendations are offered on how to successfully apply current knowledge and recently developed technology to design, manufacture and operate viable, reliable and cost-effective electronic components or photonic devices.  The emphasis is on the science and engineering of electronic and photonic packaging, on physical design problems, challenges and solutions.



Volume I focuses on physics and mechanics of micro- and opto-electronic structures and systems, i.e., on the science underpinnings of engineering methods and approaches used in microelectronics and photonics. Volume II deals with various practical aspects of reliability and packaging of micro- and opto-electronic systems. Internationally recognized experts and world leaders in particular areas of this branch of applied science and engineering contributed to the book.

Voir plus Voir moins
Contents
Volume I
List of Contributors Preface
Materials Physics
Chapter 1 Polymer Materials Characterization, Modeling and Application L.J. Ernst, K.M.B. Jansen, D.G. Yang, C. van ’t Hof, H.J.L. Bressers, J.H.J. Janssen and G.Q. Zhang 1.1. Introduction 1.2. Polymers in Microelectronics 1.3. Basics of ViscoElastic Modeling 1.3.1. Preliminary: State Dependent Viscoelasticity 1.3.2. Incremental Relationship 1.3.3. Linear State Dependent Viscoelasticity 1.3.4. Isotropic Material Behavior 1.3.5. Interrelations between Property Functions 1.3.6. Elastic Approximations 1.4. Linear ViscoElastic Modeling (Fully Cured Polymers) 1.4.1. Introduction 1.4.2. Static Testing of Relaxation Moduli 1.4.3. TimeTemperature Superposition Principle 1.4.4. Static Testing of Creep Compliances 1.4.5. Dynamic Testing 1.5. Modeling of Curing Polymers 1.5.1. “Partly State Dependent” Modeling (Curing Polymers) 1.5.2. “Fully State Dependent” Modeling (Curing Polymers) 1.6. Parameterized Polymer Modeling (PPM) 1.6.1. PPM Hypotheses 1.6.2. Experimental Characterizations 1.6.3. PPM Modeling in Virtual Prototyping Acknowledgments References
xxvii xxxi
3 3 4 6 6 10 13 14 15 17 18 18 18 23 24 27 34 35 49 53 54 55 62 62 62
vi
CONTENTS
Chapter 2 ThermoOptic Effects in Polymer Bragg Gratings Avram BarCohen, Bongtae Han and Kyoung Joon Kim 2.1. Introduction 2.2. Fundamentals of Bragg Gratings 2.2.1. Physical Descriptions 2.2.2. Basic Optical Principles 2.3. ThermoOptical Modeling of Polymer Fiber Bragg Grating 2.3.1. Heat Generation by Intrinsic Absorption 2.3.2. Analytical Thermal Model of PFBG 2.3.3. FEA Thermal Model of PFBG 2.3.4. ThermoOptical Model of PFBG 2.4. ThermoOptical Behavior of PMMABased PFBG 2.4.1. Description of a PMMABased PFBG and Light Sources 2.4.2. Power Variation Along the PFBG 2.4.3. ThermoOptical Behavior of the PFBG–LED Illumination 2.4.4. ThermoOptical Behavior of the PFBG–SM LD Illumination 2.4.5. ThermoOptical Behavior of the PFBG Associated with Other Light Sources 2.5. Concluding Remarks References Appendix 2.A: Solution Procedure to Obtain the Optical Power Along the PFBG Appendix 2.B: Solution Procedure to Determine the Temperature Profile Along the PFBG 2.B.1. Solution Procedure of the Temperature Profile Along the PFBG with the LED 2.B.2. Solution Procedure of the Temperature Profile Along the PFBG with the SM LD
Chapter 3 Photorefractive Materials and Devices for Passive Components in WDM Systems Claire Gu, Yisi Liu, Yuan Xu, J.J. Pan, Fengqing Zhou, Liang Dong and Henry He 3.1. Introduction 3.2. Tunable FlatTopped Filter 3.2.1. Principle of Operation 3.2.2. Device Simulation 3.2.3. Design for Implementation 3.3. Wavelength Selective 2×2 Switch 3.3.1. Principle of Operation 3.3.2. Experimental Demonstration 3.3.3. Theoretical Analysis 3.3.4. Optimized Switch Design 3.3.5. Discussion 3.4. High Performance Dispersion Compensators 3.4.1. MultiChannel DispersionSlope Compensator 3.4.2. High Precision FBG Fabrication Method and Dispersion Management Filters 3.5. Conclusions References
65 65 67 67 68 70 70 78 80 80 84 85 86 87 92 101 102 102 104
106 106 106
111 111 114 114 116 117 117 118 119 121 123 125 126 126 129 133 133
CONTENTS
Chapter 4 Thin Films for Microelectronics and Photonics: Physics, Mechanics, Characteriza tion, and Reliability David T. Read and Alex A. Volinsky 4.1. Terminology and Scope 4.1.1. Thin Films 4.1.2. Motivation 4.1.3. Chapter Outline 4.2. Thin Film Structures and Materials 4.2.1. Substrates 4.2.2. Epitaxial Films 4.2.3. Dielectric Films 4.2.4. Metal Films 4.2.5. Organic and Polymer Films 4.2.6. MEMS Structures 4.2.7. Intermediate Layers: Adhesion, Barrier, Buffer, and Seed Layers 4.3. Manufacturability/Reliability Challenges 4.3.1. Film Deposition and Stress 4.3.2. Grain Structure and Texture 4.3.3. Impurities 4.3.4. Dislocations 4.3.5. Electromigration and Voiding 4.3.6. Structural Considerations 4.3.7. Need for Mechanical Characterization 4.3.8. Properties of Interest 4.4. Methods for mechanical characterization of thin films 4.4.1. Microtensile Testing 4.4.2. Instrumented Indentation 4.4.3. Other Techniques 4.4.4. Adhesion Tests 4.5. Materials and Properties 4.5.1. Grain Size and Structure Size Effects 4.6. Properties of Specific Materials 4.7. Future Research 4.7.1. Techniques 4.7.2. Properties 4.7.3. Length Scale References
Chapter 5 Carbon Nanotube Based Interconnect Technology: Opportunities and Challenges Alan M. Cassell and Jun Li 5.1. Introduction: Physical Characteristics of Carbon Nanotubes 5.1.1. Structural 5.1.2. Electrical 5.1.3. Mechanical 5.1.4. Thermal 5.2. CNT Fabrication Technologies
vii
135 135 135 136 136 137 137 137 140 141 142 142 142 143 144 147 151 152 153 155 155 156 157 157 159 164 165 172 172 173 175 175 175 175 176
181 181 181 182 185 186 186
viii
5.2.1. Chemical Vapor Deposition of Carbon Nanotubes 5.2.2. Process Integration and Development 5.3. Carbon Nanotubes as Interconnects 5.3.1. Limitations of the Current Technology 5.3.2. Architecture, Geometry and Performance Potential Using Carbon Nanotubes 5.4. Design, Manufacture and Reliability 5.4.1. Microstructural Attributes and Effects on Electrical Characteristics 5.4.2. Interfacial Contact Materials 5.4.3. Endcontacted Metal–CNT Junction 5.4.4. Thermal Stress Characteristics 5.4.5. Reliability Test 5.5. Summary References
Chapter 6 Virtual ThermoMechanical Prototyping of Microelectronics and Microsystems A. Wymysłowski, G.Q. Zhang, W.D. van Driel and L.J. Ernst 6.1. Introduction 6.2. Physical Aspects for Numerical Simulations 6.2.1. Numerical Modeling 6.2.2. Material Properties and Models 6.2.3. ThermoMechanical Related Failures 6.2.4. Designing for Reliability 6.3. Mathematical Aspects of Optimization 6.3.1. Design of Experiments 6.3.2. Response Surface Modeling 6.3.3. Advanced Approach to Virtual Prototyping 6.3.4. Designing for Quality 6.4. Application Case 6.4.1. Problem Description 6.4.2. Numerical Approach to QFN Package Design 6.5. Conclusion and Challenges 6.6. List of Acronyms Acknowledgments References
Materials Mechanics
CONTENTS
187 189 191 191 191 194 194 196 198 198 199 200 200
205 205 206 208 211 215 219 225 226 236 242 249 252 252 253 259 264 264 264
Chapter 7 Fiber Optics Structural Mechanics and NanoTechnology Based New Generation of Fiber Coatings: Review and Extension E. Suhir269 7.1. Introduction 269 7.2. Fiber Optics Structural Mechanics 270 7.2.1. Review270 7.3. New NanoParticle Material (NPM) for Micro and OptoElectronic Applications 273 7.3.1. New NanoParticle Material (NPM)273 7.3.2. NPMBased Optical Silica Fibers274
CONTENTS
7.4. Conclusions Acknowledgment References
Chapter 8 Area Array Technology for High Reliability Applications Reza Ghaffarian 8.1. Introduction 8.2. Area Array Packages (AAPs) 8.2.1. Advantages of Area Array Packages 8.2.2. Disadvantages of Area Arrays 8.2.3. Area Array Types 8.3. Chip Scale Packages (CSPs) 8.4. Plastic Packages 8.4.1. Background 8.4.2. Plastic Area Array Packages 8.4.3. Plastic Package Assembly Reliability 8.4.4. Reliability Data for BGA, Flip Chip BGA, and CSP 8.5. Ceramic Packages 8.5.1. Background 8.5.2. Ceramic Package Assembly Reliability 8.5.3. Literature Survey on CBGA/CCGA Assembly Reliability 8.5.4. CBGA Thermal Cycle Test 8.5.5. Comparison of 560 I/O PBGA and CCGA assembly reliability 8.5.6. Designed Experiment for Assembly 8.6. Summary 8.7. List of Acronyms and Symbols Acknowledgments References
Chapter 9 Metallurgical Factors Behind the Reliability of HighDensity LeadFree Intercon nections Toni T. Mattila, Tomi T. Laurila and Jorma K. Kivilahti 9.1. Introduction 9.2. Approaches and Methods 9.2.1. The Four Steps of The Iterative Approach 9.2.2. The Role of Different Simulation Tools in Reliability Engineering 9.3. Interconnection Microstructures and Their Evolution 9.3.1. Solidification 9.3.2. Solidification Structure and the Effect of Contact Metalization Dissolution 9.3.3. Interfacial Reactions Products 9.3.4. Deformation Structures (Due to Slip and Twinning) 9.3.5. Recovery, Recrystallization and Grain Growth 9.4. Two Case Studies on Reliability Testing 9.4.1. Case 1: Reliability of LeadFree CSPs in Thermal cycling 9.4.2. Case 2: Reliability of LeadFree CSPs in Drop Testing 9.5. Summary
ix
277 277 277
283 283 284 285 285 286 286 288 288 288 289 291 293 293 294 295 297 302 305 309 310 311 311
313 313 315 315 321 324 324 325 330 333 335 335 337 341 347
x
Acknowledgments References
CONTENTS
Chapter 10 Metallurgy, Processing and Reliability of LeadFree Solder Joint Interconnections Jin Liang, Nader Dariavach and Dongkai Shangguan 10.1. Introduction 10.2. Physical Metallurgy of LeadFree Solder Alloys 10.2.1. TinLead Solders 10.2.2. LeadFree Solder Alloys 10.2.3. Interfacial Reaction: Wetting and Spreading 10.2.4. Interfacial Intermetallic Formation and Growth at Liquid–Solid Interfaces 10.3. LeadFree Soldering Processes and Compatibility 10.3.1. LeadFree Soldering Materials 10.3.2. PCB Substrates and Metalization Finishes 10.3.3. LeadFree Soldering Processes 10.3.4. Components for LeadFree Soldering 10.3.5. Design, Equipment and Cost Considerations 10.4. Reliability of PbFree Solder Interconnects 10.4.1. Reliability and Failure Distribution of PbFree Solder Joints 10.4.2. Effects of Loading and Thermal Conditions on Reliability of Solder Interconnection 10.4.3. Reliability of PbFree Solder Joints in Comparison to SnPb Eutectic Solder Joints 10.5. Guidelines for Pbfree Soldering and Improvement in Reliability References
Chapter 11 Fatigue Life Assessment for LeadFree Solder Joints Masaki Shiratori and Qiang Yu 11.1. Introduction 11.2. The Intermetallic Compound Formed at the Interface of the Solder Joints and the Cupad 11.3. Mechanical Fatigue Testing Equipment and Load Condition in the Lead Free Solder 11.4. Results of Mechanical Fatigue Test 11.5. Critical Fatigue Stress Limit for the Intermetallic Compound Layer 11.6. Influence of the Plating Material on the Fatigue Life of SnZn (Sn9Zn and Sn8Zn3Bi) Solder Joints 11.7. Conclusion References
Chapter 12 LeadFree Solder Materials: Design For Reliability John H.L. Pang 12.1. Introduction 12.2. Mechanics of Solder Materials 12.2.1. Fatigue Behavior of Solder Materials 12.3. Design For Reliability (DFR)
348 348
351 351 352 352 353 357 363 377 378 380 381 384 387 388 388 389 395 406 406
411 411
412
413 414 417
424 426 426
429 429 430 431 433
CONTENTS
12.4. Constitutive Models For Lead Free Solders 12.4.1. Tensile Test Results 12.4.2. Creep Test Results 12.5. Low Cycle Fatigue Models 12.6. FEA Modeling and Simulation 12.7. Reliability Test and Analysis 12.8. Conclusions Acknowledgments References
Chapter 13 Application of Moire Interferometry to Strain Analysis of PCB Deformations at Low Temperatures Arkady Voloshin 13.1. Introduction 13.2. Optical Method and Recording of Fringe Patterns 13.2.1. Fractional Fringe Approach 13.2.2. Grating Frequency Increase 13.2.3. Creation of a HighFrequency Master Grating 13.2.4. Combination of the High Grating Frequency and Fractional Fringe Approach 13.3. Data Processing 13.4. Test Boards and Specimen Grating 13.5. Elevated Temperature Test 13.6. Low Temperature Test 13.7. Conclusions Acknowledgment References
Chapter 14 Characterization of Stresses and Strains in Microelectronics and Photonics Devices Using Photomechanics Methods Bongtae Han 14.1. Introduction 14.2. Stress/Strain analysis 14.2.1. Moiré Interferometry 14.2.2. Extension: Microscopic Moiré Interferometry 14.2.3. Specimen Gratings 14.2.4. Strain Analysis 14.2.5. Thermal Deformation Measured at Room Temperature 14.2.6. Deformation as a Function of Temperature 14.2.7. Hygroscopic Deformation 14.2.8. Micromechanics 14.3. Warpage Analysis 14.3.1. Twyman/Green Interferometry 14.3.2. Shadow Moiré 14.3.3. Far Infrared Fizeau Interferometry Acknowledgment References
xi
435 435 440 443 448 454 456 456 456
459 459 460 461 461 462 463 463 463 465 468 470 472 473
475 475 476 476 477 479 480 481 485 494 501 505 505 509 514 520 520
xii
Chapter 15 Analysis of Reliability of IC Packages Using the Fracture Mechanics Approach Andrew A.O. Tay 15.1. Introduction 15.2. Heat Transfer and Moisture Diffusion in IC Packages 15.3. Fundamentals of Interfacial Fracture Mechanics 15.4. Criterion for Crack Propagation 15.5. Interface Fracture Toughness 15.6. Total Stress Intensity Factor 15.7. Calculation of SERR and Mode Mixity 15.7.1. Crack Surface Displacement Extrapolation Method 15.7.2. ModifiedJintegral Method 15.7.3. Modified Virtual Crack Closure Method 15.7.4. Variable Order Boundary Element Method 15.7.5. Interaction Integral Method 15.8. Experimental Verification 15.9. Case Studies 15.9.1. Delamination Along PadEncapsulant Interface 15.9.2. Delamination Along DieAttach/Pad Interface 15.9.3. Analysis Using Variable Order Boundary Element Method 15.10. Discussion of the Various Numerical Methods for CalculatingGandψ 15.11. Conclusion References
CONTENTS
Chapter 16 Dynamic Response of Micro and OptoElectronic Systems to Shocks and Vibra tions: Review and Extension E. Suhir 16.1. Introduction 16.2. Review 16.3. Extension: Quality of Shock Protection with a Flexible Wire Elements 16.4. Analysis 16.4.1. PreBuckling Mode: Small Displacements 16.4.2. PostBuckling Mode: Large Displacements 16.5. Conclusions References
Chapter 17 Dynamic Physical Reliability in Application to Photonic Materials Dov Ingman, Tatiana Mirer and Ephraim Suhir 17.1. Introduction: Dynamic Reliability Approach to the Evolution of Silica Fiber Performance 17.1.1. Dynamic Physical Model of Damage Accumulation 17.1.2. Impact of the ThreeDimensional MechanicalTemperatureHumidity Load on the Optical Fiber Reliability 17.1.3. Effect of Bimodality and Its Explanation Based on the Suggested Model 17.2. Reliability Improvement through NPMBased Fiber Structures
523 523 525 527 529 529 530 531 531 532 533 536 536 538 542 542 544 546 549 551 551
555 555 556 557 558 558 564 567 568
571
571 572
575 576 585
CONTENTS
17.2.1. Environmental Protection by NPMBased Coating and Overall SelfCuring Effect of NPM Layers 17.2.2. Improvement in the Reliability Characteristics by Employing NPM Structures in Optical Fibers 17.3. Conclusions References
Chapter 18 HighSpeed Tensile Testing of Optical Fibers—New Understanding for Reliability Prediction Sergey Semjonov and G. Scott Glaesemann 18.1. INTRODUCTION 18.2. Theory 18.2.1. SingleRegion PowerLaw Model 18.2.2. TwoRegion PowerLaw Model 18.2.3. Universal Static and Dynamic Fatigue Curves 18.3. Experimental 18.3.1. Sample Preparation 18.3.2. Dynamic Fatigue Tests 18.3.3. Static Fatigue Tests 18.4. Results and Discussion 18.4.1. HighSpeed Testing 18.4.2. Static Fatigue 18.4.3. Influence of Multiregion Model on Lifetime Prediction 18.5. Conclusion References Appendix 18.A: High Speed Axial Strength Testing: Measurement Limits Appendix 18.B: Incorporating Static Fatigue Results into Dynamic Fatigue Curves 18.B.1. Static Fatigue Test 18.B.2. Dynamic Fatigue Test 18.B.3. Discussion
Chapter 19 The Effect of Temperature on the Microstructure Nonlinear Dynamics Behavior Xiaoling He 19.1. Introduction 19.2. Theoretical Development 19.2.1. Background on Nonlinear Dynamics and Nonlinear ThermoElasticity Theories 19.2.2. Nonlinear ThermoElasticity Development for an Isotropic Laminate Subject to Thermal and Mechanical and Load 19.3. Thin Laminate Deflection Response Subject to Thermal Effect and Mechani cal Load 19.3.1. Steady State Temperature Effect 19.3.2. Transient Thermal Field Effect 19.4. Stress Field in Nonlinear Dynamics Response 19.4.1. Stress Field Formulation 19.4.2. Stress Distribution 19.4.3. Failure Analysis
xiii
585
587 593 593
595 595 596 596 598 599 602 602 604 605 606 606 610 613 613 614 616 620 620 621 622
627 627 630 630
631
633 633 638 653 653 654 654
xiv
19.5. Discussions 19.6. Summary Nomenclature Acknowledgment References
CONTENTS
Chapter 20 Effect of Material’s Nonlinearity on the Mechanical Response of some Piezoelectric and Photonic Systems Victor Birman and Ephraim Suhir 20.1. Introduction 20.2. Effect of Physical Nonlinearity on Vibrations of Piezoelectric Rods Driven by Alternating Electric Field 20.2.1. Physically Nonlinear Constitutive Relationships for an Orthotropic Cylindrical Piezoelec tric Rod Subject to an Electric Field in the Axial Direction 20.2.2. Analysis of Uncoupled Axial Vibrations 20.2.3. Solution for Coupled AxialRadial Axisymmetric Vibrations by the Generalized Galerkin Procedure 20.2.4. Numerical Results and Discussion 20.3. The Effect of the Nonlinear Stress–Strain Relationship on the Response of Optical Fibers 20.3.1. Stability of Optical Fibers 20.3.2. Stresses and Strains in a Lightwave Coupler Subjected to Tension 20.3.3. Free Vibrations 20.3.4. Bending of an Optical Fiber 20.4. Conclusions Acknowledgment References Index
Volume II
List of Contributors Preface
Physical Design
Chapter 1 Analytical Thermal Stress Modeling in Physical Design for Reliability of Micro and OptoElectronic Systems: Role, Attributes, Challenges, Results E. Suhir 1.1. Thermal Loading and Thermal Stress Failures 1.2. Thermal Stress Modeling 1.3. BiMetal Thermostats and other BiMaterial Assemblies 1.4. FiniteElement Analysis
660 661 662 663 663
667 667
668
670 673
677 678
683 684 686 690 692 695 696 697 701
xxvii xxxi
3 3 4 5 5