The effect of substrate orientation on the kinetics and thermodynamics of initial oxide-film growth on metals [Elektronische Ressource] / vorgelegt von Friederike Reichel
221 pages
English

The effect of substrate orientation on the kinetics and thermodynamics of initial oxide-film growth on metals [Elektronische Ressource] / vorgelegt von Friederike Reichel

-

Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres
221 pages
English
Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres

Description

Max-Planck-Institut für Metallforschung Stuttgart The effect of substrate orientation on the kinetics and thermodynamics of initial oxide-film growth on metals Friederike Reichel Dissertation an der Universität Stuttgart Bericht Nr. 209 November 2007 The effect of substrate orientation on the kinetics and thermodynamics of initial oxide-film growth on metals Von der Fakultät Chemie der Universität Stuttgart zur Erlangung der Würde eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung vorgelegt von Friederike Reichel aus Aachen Hauptberichter: Prof. Dr. Ir. E. J. Mittemeijer Mitberichter: Prof. Dr. Dr. h. c. M. Rühle Prüfer: Prof. Dr. F. Aldinger Prüfungsvorsitzender: Prof. Dr. H. Bertagnolli Tag der Einreichung: 28.09.2007 Tag der mündlichen Prüfung: 19.11.2007 MAX-PLANCK-INSTITUT FÜR METALLFORSCHUNG STUTTGART INSTITUT FÜR METALLKUNDE DER UNIVERSITÄT STUTTGART Stuttgart 2007 Contents 1. General Introduction .............................................................................................7 1.1. The initial oxidation of bare metals......................................................................................... 8 1.1.1. Kinetics................................................................................................................................ 8 1.1.2.

Sujets

Informations

Publié par
Publié le 01 janvier 2007
Nombre de lectures 8
Langue English
Poids de l'ouvrage 8 Mo

Extrait

Max-Planck-Institut für Metallforschung
Stuttgart

The effect of substrate orientation on the kinetics and
thermodynamics of initial oxide-film growth on metals

Friederike Reichel
Dissertation
an der
Universität Stuttgart

Bericht Nr. 209
November 2007
The effect of substrate orientation on the kinetics and
thermodynamics of initial oxide-film growth on metals


Von der Fakultät Chemie der Universität Stuttgart
zur Erlangung der Würde eines Doktors der Naturwissenschaften (Dr. rer. nat.)
genehmigte Abhandlung


vorgelegt von

Friederike Reichel

aus Aachen

Hauptberichter: Prof. Dr. Ir. E. J. Mittemeijer
Mitberichter: Prof. Dr. Dr. h. c. M. Rühle
Prüfer: Prof. Dr. F. Aldinger
Prüfungsvorsitzender: Prof. Dr. H. Bertagnolli

Tag der Einreichung: 28.09.2007
Tag der mündlichen Prüfung: 19.11.2007



MAX-PLANCK-INSTITUT FÜR METALLFORSCHUNG STUTTGART
INSTITUT FÜR METALLKUNDE DER UNIVERSITÄT STUTTGART

Stuttgart 2007 Contents
1. General Introduction .............................................................................................7
1.1. The initial oxidation of bare metals......................................................................................... 8
1.1.1. Kinetics................................................................................................................................ 8
1.1.2. Thermodynamics................................................................................................................. 9
1.2. Thin oxide films on bare Al single-crystals.......................................................................... 10
1.2.1. Thermal oxidation of bare Al substrates ........................................................................... 10
1.2.2. Modifications of alumina ................................................................................................... 11
1.2.3. Applications of thin Al O films.......................................................................................... 11 2 3
1.3. Methods of characterization .................................................................................................. 12
1.3.1. Angle-Resolved X-ray Photoelectron Spectroscopy (AR-XPS)........................................ 12
1.3.2. Real-time In-situ Spectroscopic Ellipsometry (RISE)........................................................ 14
1.3.3. Low Energy Electron Diffraction (LEED)........................................................................... 15
1.3.4. High-Resolution Transmission Electron Microscopy (HR-TEM)....................................... 16
1.4. Outline...................................................................................................................................... 18
References...................................................................................................................................... 18
2. Thermodynamic model of oxide overgrowth on bare metals..........................23
2.1. Introduction ............................................................................................................................. 23
2.2. Theory ...................................................................................................................................... 25
2.2.1. Basis of the model............................................................................................................. 25
2.2.2. Interfacial energies............................................................................................................ 27
2.2.3. Misfit-dislocation energy ................................................................................................... 31
A) The Semi-infinite Overgrowth (SIO) approach ..................................................................... 31
B) The Large Dislocation Distance (LDD) approach................................................................. 35
C) The Extrapolation (EXTR) approach.................................................................................... 35
D) The First Approximation (APPR) approach.......................................................................... 36
E) The Ball approach ................................................................................................................ 37
F) The Volterra (VOLT) approach............................................................................................. 38
2.2.4. Minimization of γ ; numerical procedure .......................................................... 39
MM-Ox y
2.2.5. General remarks about the misfit-dislocation energy ....................................................... 40
2.3. Energetics of chromium-oxide films on chromium substrates.......................................... 40
2.3.1. Bulk Gibbs energies of the Cr O and Cr O cells................................................. 41
{ }23 23
2.3.2. Surface energies of the Cr O and Cr O cells...................................................... 43
{ }23 23
2.3.3. Interfacial energies of the Cr O and Cr O cells................................................... 46
{ }23 23
A) The interface energy of the crystalline-amorphous Cr −{Cr O } interface .................... 46 23
B) The interface energy of the crystalline-crystalline Cr − Cr O interface ...................... 47 23
C) Difference in interface energy of the crystalline and amorphous overgrowths .................... 57
2.4. Relative stabilities of amorphous and crystalline oxide films............................................ 59
2.4.1. Model predictions .............................................................................................................. 59
2.4.2. Experimental observations versus model predictions....................................................... 60
2.5. Conclusion ............................................................................................................................... 61
References ...................................................................................................................................... 63
3. The thermodynamic stability of amorphous oxide overgrowths on metals .. 65
3.1. Introduction.............................................................................................................................. 65
3.2. Theory and calculation ........................................................................................................... 67
3.2.1. Basics of the model........................................................................................................... 67
3.2.2. Bulk energy differences..................................................................................................... 69
3.2.3. Surface ener ............................................................................................... 70
3.2.4. Interface energy differences.............................................................................................. 71
A) The crystalline-amorphous interface energy ........................................................................ 71
B) The crystalline-crystalline interface energy .......................................................................... 72
3.3. Model predictions.................................................................................................................... 76
3.3.1. System specific details and results ................................................................................... 76
A) Al/Al O ................................................................................................................................. 76 2 3
B) Ni/NiO ................................................................................................................................... 79
C) Cu/CuO 81 2
D) Cr/Cr O. 81 2 3
E) Fe/FeO and Fe/Fe O ........................................................................................................... 82 3 4
F) Mg/MgO.......... 84
G) Zr/ZrO... 87 2
H) Ti/TiO.... 87 2
I) Si/SiO .................................................................................................................................... 88 2
3.3.2. Thermodynamic stability of amorphous oxide film on various metals............................... 89
3.4. Conclusions ............................................................................................................................. 92
Appendix 3.A. Estimation of the density of an amorphous oxide............................................. 94
Appendix 3.B. Estimation of the surface energies of the oxide overgrowths ......................... 95
3.B.1. Amorphous oxides ............................................................................................................ 95
3.B.1. Crystalline oxides.............................................................................................................. 97
Appendix 3.C. Enthalpy of mixing O in <M>.............................................................................. 101
References ...................................................................................................

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents