Totally degenerated formal schemes [Elektronische Ressource] / vorgelegt von Rolf Stefan Wilke
145 pages
English

Totally degenerated formal schemes [Elektronische Ressource] / vorgelegt von Rolf Stefan Wilke

Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres
145 pages
English
Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres

Description

Totally Degenerated Formal SchemesDissertation zur Erlangung des Doktorgrades Dr. rer. nat.der Fakultät für Mathematik und Wirtschaftswissenschaftender Universität UlmVorgelegt von Rolf Stefan Wilke aus ArolsenUlm, 2009Dekan: Prof. Dr. Werner KratzErster Gutachter: Prof. Dr. Werner LütkebohmertZweiter Prof. Dr. Irene I. BouwTag der Promotion: 4. Dezember 2009“It is a mistake to think you can solve any major problems just with potatoes.”Douglas Adams: Life, The Universe and EverythingContentsIntroduction iii1 Formal and Rigid Geometry 11.1 Rigid Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 Admissible Formal Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.3 Formal Cartier and Weil Divisors . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Convex Geometry and Toric Varieties 92.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92.2 Toric Varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122.3 Simplicial Homology and Cohomology . . . . . . . . . . . . . . . . . . . . . . 142.4 Polytopal Complexes with Integral Structure . . . . . . . . . . . . . . . . . . . 15n3 Polytopal Domains in G 17m3.1 Definitions and First Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 173.2 Subdivisions and Admissible Formal Blowing Ups . . . . . . . . . . . . . . . . 253.

Sujets

Informations

Publié par
Publié le 01 janvier 2009
Nombre de lectures 25
Langue English

Extrait

Totally Degenerated Formal Schemes
Dissertation zur Erlangung des Doktorgrades Dr. rer. nat.
der Fakultät für Mathematik und Wirtschaftswissenschaften
der Universität Ulm
Vorgelegt von Rolf Stefan Wilke aus Arolsen
Ulm, 2009Dekan: Prof. Dr. Werner Kratz
Erster Gutachter: Prof. Dr. Werner Lütkebohmert
Zweiter Prof. Dr. Irene I. Bouw
Tag der Promotion: 4. Dezember 2009“It is a mistake to think you can solve any major problems just with potatoes.”
Douglas Adams: Life, The Universe and EverythingContents
Introduction iii
1 Formal and Rigid Geometry 1
1.1 Rigid Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Admissible Formal Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Formal Cartier and Weil Divisors . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 Convex Geometry and Toric Varieties 9
2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Toric Varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Simplicial Homology and Cohomology . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Polytopal Complexes with Integral Structure . . . . . . . . . . . . . . . . . . . 15
n3 Polytopal Domains in G 17m
3.1 Definitions and First Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Subdivisions and Admissible Formal Blowing Ups . . . . . . . . . . . . . . . . 25
3.3 Cartier Divisors, Line Bundles and Polyhedral Functions . . . . . . . . . . . . 31
3.4 Strictly Semi-Stable Formal Models . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.5 Ampleness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.6 on the Boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4 Totally Degenerated Formal Schemes 49
4.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 The Universal Covering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3 The Picard Variety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.4 Automorphic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.5 General Polytopal Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5 Examples 81
5.1 Mumford Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
iii Contents
5.2 Analytic Tori . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.3 The Hopf Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.4 A Rigid Analytic Klein Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.5 The Sheared Torus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.6 The General Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6 Affinoid Polytopal Domains are Factorial 107
6.1 Van der Put’s Base Change Theorem . . . . . . . . . . . . . . . . . . . . . . . . 108
6.2 The Main Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Bibliography 123
Zusammenfassung (deutsch) 127Introduction
In this thesis, we introduce a new class of rigid analytic varieties over a complete non-
archimedean field K ; namely those which have a totally degenerated formal model. These are
natural generalizations of the well known Mumford curves to arbitrary dimension. Similar
to the one-dimensional case, we will show that the Picard variety of these varieties is given
g g
by a quotient G =M , where M is a lattice in G , not necessarily of full rank.m;K m;K
To any smooth projective curve X over C (or, equivalently: a compact Riemann sur-
face) of genus g , one can associate its Jacobian variety Jac(X) ; an abelian variety which
parametrizes the equivalence classes of divisors on X of degree 0 . The well-known Torelli
theorem states that X is uniquely determined by its (principal polarized) Jacobian. This
makes the Jacobian a very important object for the study of Riemann surfaces. If X is a
Riemann surface of genus 1 , i.e. an analytic torus C= , the Jacobian Jac(X) is canon-
ically isomorphic to X itself. In general, the Jacobian is analytically isomorphic to a g -
g gdimensional analytic torus C =M , where M is a lattice in C of rank g , the so-called
period lattice.
Over a complete non-archimedean valued field K , such as the p -adic numbers Q , thep
above situation does not extend without modification. In general, it is not true that the
g
Jacobian of a curve is given by an analytic torus G =M . This is related to the fact thatm;K
only a certain class of p -adic curves has a complex analog; namely, the so-called Mumford
curves. These curves X have a formal model X over the valuation ring R such thatK
1every irreducible component of the special fibre X is isomorphic to P and X has only0 0
ordinary double points as singularities. Mumford proved in [28] that these are precisely the
curves which have a Schottky uniformization
= , where PGL(2;K) is a SchottkyK
1group, and
P is the set of points where acts discontinuously; this is a directK K
analog of the classical Schottky uniformization over the complex numbers. In [26], Manin
and Drinfeld proved that, as in the complex case, the Jacobian variety of a Mumford curve
g
of genus g is again isomorphic to an analytic torus G =M , where M is a multiplicativem;K
glattice in G of rank g .m;K
iiiiv Introduction
0If dimX > 1 , the analog of the Jacobian variety Jac(X) is the Picard variety Pic (X) ,
which represents certain isomorphy classes of line bundles. The existence of the Picard
variety of proper algebraic schemes over a field has been proven in the 1960s. An analogous
result in the category of proper rigid analytic varieties over a complete discretely-valued
field K was established much later, in 2000, by Hartl and Lütkebohmert [21].
0In this thesis, we will deal with the question when the Picard variety Pic (X ) of a properK
grigid-analytic variety X over K is again an analytic torus G =M . The example ofK m;K
Mumford curves already shows that one can expect this to be true only in very special
cases. In the work of Hartl and Lütkebohmert [21], it becomes apparent that the
fibre of a suitable formal model plays a key role in determining the structure of the Picard
variety. This motivates the following generalization of Mumford curves:
We say a proper rigid-analytic variety X over K has a totally degenerated model X over RK
if the special fibre X of X consists of smooth rational components with normal crossings;0
i.e. locally, X looks like the intersection of some coordinate hyperplanes in the affine space0
r
A (see Definition 4.1.1 for the precise conditions).
Theorem 4.3.5. Let X be the generic fibre of a totally degenerated formal scheme which is proper.K
0On the category of smooth and connected rigid spaces, the Picard functor Pic is represented byX =KK
a quotient T =M , where T is a split torus, and M is a lattice in T such that M\T =f1g .K K K K
0If X is algebraizable, it is well-known that Pic (X ) is always proper; i.e. M has fullK K
rank g . If X is not algebraizable, however, this need not be true. A standard example isK
the Hopf surface, introduced in the rigid analytic framework by Mustafin [29], which also
has a totally degenerate model.
Generalizing the techniques for Mumford curves, we construct a suitable uniformization
X =
= . As in the case of analytic tori, we show that any line bundle on X whichK K K
0corresponds to a point of Pic (X ) pulls back to the trivial line bundle on
. Hence,K K
line bundles on X can be described by -linearizations of constant type of the trivial lineK
0bundle on
. This allows us to describe Pic (X ) in terms of automorphic functions:K K
gb e eTheorem 4.4.12. Let J := Hom( ;G ) G , where is the free part of the abelianization=m;K m;K
=[ ; ] of , and let
bM :=fc2J ; c is the factor of automorphy for an invertible functionf on
gK
0b bThen M is a lattice in J , and the quotient J :=J=M represents Pic (X ) .K

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents