//img.uscri.be/pth/04da5a3d82206edda62c8fe6d803d25131343d0e
Cette publication ne fait pas partie de la bibliothèque YouScribe
Elle est disponible uniquement à l'achat (la librairie de YouScribe)
Achetez pour : 88,65 € Lire un extrait

Téléchargement

Format(s) : PDF

avec DRM

Heating versus Cooling in Galaxies and Clusters of Galaxies

De
The Universe would be a dull and dark place if the gaseous baryons did not cool, collapse, and form stars and galaxies. However, if this gas is allowed to cool unimpeded at the rate predicted from known atomic physics, in the context of a well-established cosmological model, the gaseous matter would form stars and galaxies with a high e?ciency, so that far more than the observed fraction of about 10–15% of the baryonic matter would be found in luminous stellar systems. Therefore,cooling must be damped or regulatedby heating processes, and observations show that this ‘feedback’ is a widespread astrophysical phenomenon. The place where this cooling and feedback manifests itself most dram- ically is in the inner regions of the most massive Dark Matter halos found in our Universe, in the cores of galaxy clusters. The e?ect of cosmic co- ing in these objects was recognized in the mid-1970s, and the term ‘cooling ?ow’ was introduced by Andy Fabian and colleagues at Cambridge as a p- sible explanation of the physical processes obtained in the central regions of clusters. The name refers to the fact that gas cooling in the inner regions is associated with a loss of central pressure, causing an in?ow of hot gas from larger radii.
Voir plus Voir moins
The Universe would be a dull and dark place if the gaseous baryons did not cool, collapse, and form stars and galaxies. However, if this gas is allowed to cool unimpeded at the rate predicted from known atomic physics, in the context of a well-established cosmological model, the gaseous matter would form stars and galaxies with a high e?ciency, so that far more than the observed fraction of about 10–15% of the baryonic matter would be found in luminous stellar systems. Therefore,cooling must be damped or regulatedby heating processes, and observations show that this ‘feedback’ is a widespread astrophysical phenomenon. The place where this cooling and feedback manifests itself most dram- ically is in the inner regions of the most massive Dark Matter halos found in our Universe, in the cores of galaxy clusters. The e?ect of cosmic co- ing in these objects was recognized in the mid-1970s, and the term ‘cooling ?ow’ was introduced by Andy Fabian and colleagues at Cambridge as a p- sible explanation of the physical processes obtained in the central regions of clusters. The name refers to the fact that gas cooling in the inner regions is associated with a loss of central pressure, causing an in?ow of hot gas from larger radii.