Plant Molecular Breeding

Plant Molecular Breeding

-

Livres
280 pages

Description

The last few years have seen an explosion of new information and resources in the areas of plant molecular genetics and genomics. As a result of developments such as high throughput sequencing, we now have huge amounts of information available on plant genes. But how does this help people charged with the task of improving crop species to create products with altered functions or improved characteristics?

This volume considers ways in which the new information, resources and technology can be exploited by the plant breeder. Examples in current use will be quoted wherever possible.

Sujets

Informations

Publié par
Ajouté le 18 février 2009
Nombre de lectures 0
EAN13 9781405147750
Licence : Tous droits réservés
Langue English
Signaler un abus
Contents
Contributors Preface
1
Mapping, characterization and deployment of quantitative trait loci MICHAEL J. KEARSEY AND ZEWEI W. LUO
1I.n1troduction  1.2 Genetic basis of quantitative trait performance  1.3 Basic modelling of quantitative traits  1.4 Statistical principles and methods for mapping QTL  1.4.1 Molecular markers for QTL mapping  1.4.2 QTL mapping in segregating populations  1.4.3 QTL mapping in pedigree populations  1.4.4 QTL analysis in natural populations  1.4.4.1 Analysis of variance under an unbalanced nested design 1.4.4.R2egressainoanlysis 1.4.4L.3ikelihaonoadlysis  1.5 The application of QTL theory 1.5A.1dvansecgerdegaptionpgulations 1.5.2 Part chromosome substitution lines (backcross introgression lines) and near-isogenic lines (NILs) 1.5CP.3aSrLts
1.5.N4ILs 1.5S.5TAIRS 1.5.C6lonQiTngL1C.6onclusion References
2 Markerassisted breeding FRÉDÉRIHCOSPITAL
Target locus is a known locus Target locus is a quantitative trait locus (QTL)
2I.n1troduction  2.2 Marker-assisted backcrossing of a single target gene 2F.2o.r1egrosuelnedction 2.2.1.1  2.2.1.2 2.2.1.M3inipmoaplulastizoens 2.2B.2ackgrosuelnedction 2.2.2.1  2.2.2.2  2.2.2.3
Expected genome contents with no selection Marker-based estimate of recipient genome content Reduction of linkage drag (carrier chromosome)
xi xiii
1
1 2 3 5 6 8 13 14 16 17 17 20 20
21 22 22 24 24 25 25
3
0
30 31 32 32 35 36 37 38 40 40
vi
CONTENTS
 2.2.2.4 Selection on non-carrier chromosomes 2.2.2E.5xeafmofpleciencyforacompletescheme 2.3 Genotype building strategies for multiple target genes 2.3.M1arker-bapsoepdulastciroenening48 2.3.M2arker-braescedursrelnetction 2.3.M3arker-bgapseyenrdaemiding 2.3.4 Marker-assisted backcrossing for several target genes  2.4 Selection combining molecular and phenotypic information 2.4mT.a1hreker-phenotiynpdex  2.5 Selection for hybrid performance 2E.6xperimerentsaullts2C.7onclusions References
3
Genomic colinearity and its application in crop plant improvement H. JOHN NEWBURY AND ANDY H. PATERSON
3I.n1troduction his3t.Ao2rpiecraslpective 3.3 Examples of synteny between plant groups  3.3BT.r1haessicaceae  3.3FT.a2hbeaceae  3.3PT.o3haeceae  3.4 The limits to colinearity  3.5 How can synteny be exploited by those attempting to improve plants? 3.5.D1isreeasiestance 3.5F.2lowetriinmge3.5P.hl3aeingtht3C.6onclusion References
4 Plant genetic engineering IAPNUDDEPHAT
4B.1ackground  4.1.1 Key components of plant genetic engineering 4.1.M2eptlhrfaorndtsformation 4.2Agrobacterium-mediated transformation  4.2.1Agrobacterium rhizogenes89 4.2.M2ontorcaontsformation4.2.V3ecftorrsAgrobacterium-mediated transformation  4.2.3I.n1tegravteivcetors 4.2.3.Bi2vnearctyors 4.3 Direct DNA delivery 4.3P.a1rtbioclmebardment 4.3P.2rotoplasts  4.3.3 Alternative methods for direct gene transfer 4P.4erspectives  4.5 Alternative approaches to plant genetic engineering  4.5I.n1-pltaencthanologies 4.5P.l2astids 4.6 Selection of transformation events
45 46 48
48 49 49 50 51 52 52 55 56
6
0
60 60 61 61 64 66 68 69 70 72 74 75 76
8
2
82 84 85 86
91 93 93 94 96 96 97 99 99 100 100 104 107
CONTENTS
4.M7arker-tfrraenesformation 4.7C.1o-transformation  4.7S.2ite-specifi c recombination 4.7T.r3ansposealbelements4.7P.e4rspectives 4.8 Prospects for improving the efficiency of transformation  4.8.1 Genotypic variation for plant transformation  4.8.2 Interaction of plant genes with the processes of transformation 4.8.2aC.tt1ealclhment4.8.2T.r2atnaniggrtedrnsfe 4.8.2T.-3DinNteAgration4C.9onclusions References
5 Plant germplasm collections as sources of useful genes IAGNODWIN
5I.n1troduction  5.1.1 Germplasm collections as museums  5.1.2 The evolution and domestication of crop species  5.2 The concept of gene pools 5.c2Tl.a1hsesmicoadlel 5.2.2 Beyond the tertiary gene pool  5.3 Molecular genetics and genomics 5.3R.1FmLarPkers5.3P.2CR-bamseardkers 5.4 Plant germplasm collections  5.4.1 Collection issues: centres of diversity  5.4.1I.d1entifi cation of phylogenetic relationships  5.4.2 Management and conservation: rationalization and core collections  5.4.3 Utilization requires some sort of screening  5.5 The challenge for plant breeding: utilization 5.5E.1xplpoirttihimnegpgeaornoyel 5.5.2 Exploiting the secondary gene pool  5.5.3 Beyond the secondary gene pool: how can barriers be broken down? 5.5.3.D1ipplrooidgenitors 5.6 Modern techniques: genomics meets bioinformatics  5.6.1 Better description and measurement of diversity  5.6.2 Better screening of variation for a trait  5.6.3 Better management of data: dynamic data sets  5.7 Beyond the gene pool: redesigning agricultural species with germplasm utilization References
6
The impact of plant genomics on maize improvement DONAL M. O’SULLIVAN AND KEITH J. EDWARDS
6I.n1troduction  6.1.1 Origins and distribution of maize growing  6.1.1.1 Five small steps for breeding – one giant step for mankind  6.1.2 Food and industrial uses of maize  6.1.2P.1opmulaab-ezioorfesds 155  6.1.2.2 Industrial processing of maize
vii
109 110 112 113 113 113 114 116 116 116 117 119 120
134
134 134 134 135 135 136 137 137 138 138 138 139 139 141 142 143 143 144 144 145 145 146 146 147 148
152
152 153 153 155
157
viii
CONTENTS
6.1.2S.t3aurscehs6.1.u2s.Oe4isl6.1.2P.r5oatneidnbreuses 6.2 Twentieth-century maize breeding  6.2G.1ermplraesuosecrm 6.2.1G.b1eaneks 6.2.1I.n2-csoitnuservation6.2.B2reedmientghods 6.2.2.1 Inbred lines and hybrid maize  6.2.2C.2ytoplassmaleteric3litiy61  6.2.2.3 Molecular markers and marker-assisted selection  6.2.2.4 Candidate genes: the next generation of molecular markers  6.2.2.5 Foreground and background selection 6.2.B3reetdairngets  6.2.3.1 Example 1: Starch synthesis  6.2.3.2 Example 2: Quality protein maize (QPM)  6.2.3.3 Example 3: Chill tolerance  6.2‘.F4irst-wmavbaeizeyologechnot 6.2.m4a.Bi1tze 6.2.4.H2erbicide-resistmaanitze169 6.2.4E.3ngineemraelde-stemrialieze169  6.2.4.4 Production of GM maize  6.3 Maize genomics in the twenty-first century  6.3.1 Maize gene function discovery 6.3.1T.r1anscriptomics6.3.1F.2unctiogneanlomics6.3.1.G3ensoemqueencing/structgueranlomics172 6.3.1E.4volutiongaernyomics6.3.1.B5ioinformatics 6.3C.2omparagteivneomics 6.3.2gT.gr1heaenssome 6.4 A new paradigm for molecular breeding of maize References
7
Plant genomics and its impact on wheat breeding JAMES A. ANDERSON
7I.n1troduction  7.2 Overview of genomics resources in wheat 7.2.G1enstetoicks 7.2.G2epnahentyidscmicaapls 7.2.3 Gene clustering and density  7.2.4 Synteny and comparative mapping 7.2S.5equence-bhasoemdology 7.2.6 Will rice genomics contribute to wheat improvement?  7.3 Gene cloning in wheat  7.3.1Rht1 7.3.2Cre37.(3rL.u3esatfLr10) 191 7T.4ransgenics 7.5 Applications/examples of DNA marker technology in wheat breeding  7.5A.1ssesgsienivtydsiiceetrg
158 159 159 159 160 160 161 161 161
164 165 166 166 167 167 168 168 168
169 170 171 171 171
174 174 174 176 177 179
184
184 184 185 186 187 188 189 189 190 191 191
192 193 193
CONTENTS
7.5.M2arker-assisioctleedte)SAM(n  7.5.2.1 DNA markers for disease resistance genes  7.5.2.2 Limitations to marker-assisted selection in wheat,  paonsdsioblluetions  7.5.2.3 Beyond MAS: direct allele selection  7.5.2.4 Retrospective breeding and MAS 7.5.2.Mc5oAnSclusionsAcknowledgements References
8
Genomics and molecular breeding for root and tuber crop improvement M.W. BONIERBALE, R. SIMON, D.P. ZHANG, M. GHISLAIN, C. MBA AND X.-Q. LI
 8.1 Root and tuber crop profile  8.2 The power of comparative mapping for R&T crops  8.3 The ‘…ics’ technology to unravel R&T gene networks 8G.tr4eanesfer  8.5 Primary traits for R&T crop improvement  8.5.1 Potato late blight disease; mapping and engineering progress  8.5.2 Contemporary approaches to durable resistance to potato late blight  8.5.2.1 Candidate gene associations with resistance in mapping populations  8.5.2.2 Use of functional marker loci (genes) to enhance comparative  mapping  8.5.2I.d3entifi cation of up- and down-regulated genes as candidate determQinToafLnts 8.6 Molecular approaches to characterizing and improving carbohydrate metabolism Rcr&ionTps  8.6.1 Molecular manipulation of starch functional properties through expression  traonfsgenes  8.6.2 Starch grain formation and morphology 8.6S.t3arch-sucgoanrversion8.6S.t4acrocnhtent 8.6.5 Productivity and sink strength  8.6.6 Genomics contribution to the improvement of starch yields and quality Rcri&onTps8F.7upturroespects 8.7C.1arbohy idtrmapitteemtnorev 8.7R.2esistabnrceeding  8.7.3 High-throughput genotyping and association mapping Acknowledgement References
Index
ix
194 195
199 202 204 205 205 206
216
216 218 220 222 223 223 228 229
230
231
233
234 234 235 236 237
238 239 240 240 241 242 242
255