Representation theoretical construction of the classical limit and spectral statistics of generic Hamiltonian operators [Elektronische Ressource] / von Ingolf Schäfer

icon

80

pages

icon

English

icon

Documents

2006

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
icon

80

pages

icon

English

icon

Ebook

2006

Lire un extrait
Lire un extrait

Obtenez un accès à la bibliothèque pour le consulter en ligne En savoir plus

RepresentationTheoreticalConstructionoftheClassicalLimitandSpectralStatisticsofGenericHamiltonianOperatorsvon Ingolf SchäferNovember 21, 2006Dissertationzur Erlangung des Grades eines Doktors derNaturwissenschaften– Dr. rer. nat. –Datum des Promotionskolloquiums: 09.11.2006Gutachter: Prof. Dr. E. Oeljeklaus (Universität Bremen)Prof. Dr. A. T. Huckleberry (Ruhr-Universität Bochum)Contents1 Introduction 72 ConstructionoftheClassicalLimit 112.1 The Classical Limit in the Simple Case . . . . . . . . . . . . . . . . . 112.2 Thel Limit in the General Case . . . . . . . . . . . . . . . . 122.3 Realizing the Classical Limit as an Analytical Limit . . . . . . . . . . 143 SpectralStatisticsofSimpleOperators 213.1 A Convergence Theorem for Simple Operators . . . . . . . . . . . . . 213.2 Rescaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243.2.1 Rescaling and Spectral Statistics . . . . . . . . . . . . . . . . 253.2.2ling and exp . . . . . . . . . . . . . . . . . . . . . . . . . 274 SpectralStatisticsofGenericOperators 294.1 Topology and Completion ofU(g) . . . . . . . . . . . . . . . . . . . . 29n4.2 A Notion of Hermitian Operators forO(C ) . . . . . . . . . . . . . . 314.3 Examples of Convergence . . . . . . . . . . . . . . . . . . . . . . . . . 324.4 Rational Independence of the Spectra in Representations . . . . . . . 354.5 Ergodic Properties ofH . . . . . . . . . . . . . . . . . . . . . . . . 36gen4.6 The Sets B . . . . . . .
Voir icon arrow

Publié par

Publié le

01 janvier 2006

Nombre de lectures

37

Langue

English

Representation Theoretical Construction of the Classical Limit and Spectral Statistics of Generic Hamiltonian Operators
von Ingolf Schäfer
November 21, 2006
Dissertation
zur Erlangung des Grades eines Doktors der Naturwissenschaften – Dr. rer. nat. –
Datum
des
Gutachter:
Promotionskolloquiums:
09.11.2006
Prof. Dr. E. Oeljeklaus Prof. Dr. A. T. Huckleberry
(Universität Bremen) (Ruhr-Universität Bochum)
Contents 1 Introduction 7 2 Construction of the Classical Limit 11 2.1 The Classical Limit in the Simple Case . . . . . . . . . . . . . . . . . 11 2.2 The Classical Limit in the General Case . . . . . . . . . . . . . . . . 12 2.3 Realizing the Classical Limit as an Analytical Limit . . . . . . . . . . 14 3 Spectral Statistics of Simple Operators 21 3.1 A Convergence Theorem for Simple Operators . . . . . . . . . . . . . 21 3.2 Rescaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.2.1 Rescaling and Spectral Statistics . . . . . . . . . . . . . . . . 25 3.2.2 Rescaling andexp. . . . . . . . . . . 27. . . . . . . . . . . . . . 4 Spectral Statistics of Generic Operators 29 4.1 Topology and Completion ofU(g). . . . . . . . . 29. . . . . . . . . . . 4.2 A Notion of Hermitian Operators forO(Cn) 31. . . . . . . . . . . . . . 4.3 Examples of Convergence . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.4 Rational Independence of the Spectra in Representations . . . . . . . 35 4.5 Ergodic Properties ofHgen. . . . . . . . . . . . .  36. . . . . . . . . . . 4.6 The SetsBN 37. . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 4.7 Convergence toµPoisson. . . . . . . . . . . . . . . . . . . . . . . . . . 40 5 The Poisson Spectral Statistics for Tori 43 5.1 Some Combinatorics . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.2 The Random VariableZ(n, F, T(N)). . . . . . . . 45. . . . . . . . . . 5.3 Moving the Estimates toTCor(k, a, f, T(N)). . . . . . . . . . . . . . 50 5.4 The Weak Convergence ofµ(naive, U(N),1) 51to the Poisson Distribution 5.5 TheM 53 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-grid . 5.6 The Key Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.7 The Final Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 6 Appendix 59 6.1 Representation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 59 6.1.1 Representations of Compact Lie Groups . . . . . . . . . . . . 59 6.1.2 The Universal Enveloping Algebra . . . . . . . . . . . . . . . . 62 6.1.3 The Laplace Operator . . . . . . . . . . . . . . . . . . . . . . 63 6.1.4 The Theorem of Borel-Weil and the Embedding Of Line Bundles 63 3
Contents
4
6.2 6.3
Symplectic geometry and momentum maps . . . . . . . . . . . Generalities on Level Spacings . . . . . . . . . . . . . . . . . . 6.3.1 The Nearest Neighbor Distribution . . . . . . . . . . . 6.3.2 The Kolmogorov-Smirnov Distance . . . . . . . . . . . 6.3.3 ApproximatingN. . . . . . . . . . . . . . . . -tuples . 6.3.4 The Nearest Neighbor Statistics underexp. . . . . . . 6.3.5 The Nearest Neighbor Statistics and the CUE Measure
. . . . . . .
. . . . . . .
. . . . . . .
. . . . . . .
66 67 67 69 71 73 75
List
1.1
2.1
4.1 4.2
6.1
of Figures
A sample histogram of the nearest neighbor statistics . . . . . . . . .
A picture of theU-section. . . . . . . . . . . . . . . . . . . . . . . .
A picture ofB3. . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . Pictures ofB3andB4intersected with the hyperplane normal to the diagonal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Approximation ofµPoisson.
. . . . . . . . . . . . . . . . . . . . . . . .
8
20
38 39
72
5
List
6
of
Figures
1 Introduction
The theory of spectral statistics is concerned with the spectral properties of en-sembles of linear operators. Typically, these depend on a parameterNwhich is supposed to be very large or even approaching infinity. The origin of this field is quantum physics, where such ensembles arose as models for the energy spectra of large atoms. Another branch of physics, namely semiclassical physics, is also concerned with such ensembles and their spectral statistics. In semiclassical physics large values of Nshould correspond to a quantum mechanical system which approaches classical mechanics. Details about these relations can be found in [Meh91] and [Haa99]. Finally, spectral statistics have been studied in the context of number theory, with the most famous example being the distribution of zeros of the Riemannζ-function on the critical line. An introduction to this field is given in [Sna00]. Under the assumption of genericity one might hope that there exist natural se-quences of operators taken from these ensembles such that the spectral properties of the individual operators reflect those of the ensembles. We are concerned here with two examples, in which spectral statistics appear. The first being the theory of Random Matrices. In this theory natural sequences of symmetric spaces with invariant measures on them are given. These spaces have natural representations as matrices and one is interested in the limit of the spectral statistics asN→ ∞ example is the sequence of unitary groups. AnU(N)with the Haar measure. In [KS99] it is proven that a limit measure of a special kind of spectral statistics exists for this example. The second example, in which spectral statistics appear, is given by the approach suggested in [GHK00]. In this article the authors consider two fixed operators in the universal enveloping algebra ofSL(3,C)in a sequence of irreducible representations ofSL(3,C)and study the spectral statistics by numerical methods. motivation The from the approach stems from a previous paper (cf. [GK98]) of two of the authors: Such a sequence of irreducible representations occurs in the construction of the clas-sical mechanical system in the limit of a quantum mechanical system withSL(3,C) symmetry. We will follow this approach in the following chapters. Our main device in the study of spectral statistics is the nearest neighbor statistics, i.e. the normalized distribution of distances of neighboring eigenvalues (counted with multiplicity) of such linear operators. It is frequently drawn as a histogram (see Figure 1.1). A detailed explanation of this plot can be found in the Appendix. The nearest neighbor statistics lead to Borel measures on the positive real line by putting a Dirac measure for every occurring distance of neighboring eigenvalues with proper normalization. Out of the wealth of notions of convergence for such
7
1 Introduction
Figure 1.1: A sample histogram of the nearest neighbor statistics
measures we choose the weak convergence (in probability theory: convergence in distribution) and the Kolmogorov-Smirnov convergence. The Kolmogorov-Smirnov distance of two measuresµ, νis given by tRZtZt,(1.1) dKS(µ, ν) = sup i.e., Kolmogorov-Smirnov convergence is uniform convergence of the cumulative dis-tribution functions. We will examinedKSfor sequences of individual operators relative to a fixed measureν, but also averagedKSwith respect to a fixed probabil-ity measureν sequences of irreducible representations Hereover the full ensemble. will arise. This text is structured into six chapters. Following the approach in [GK98] we give a general construction of the classical limit for semi-simple compact Lie groups in Chapter 2. This can be done in a functorial way, but the objective of Chapter 2 is to give an interpretation as a mathematical limit as a parameternconverges to . Chapter 3 deals with the spectral statistics of operators in the Lie algebra along sequences of irreducible representations. It is necessary to discuss possible scalings of these operators in this context. The goal of Chapter 4 is to study the spectral statistics of exponentiated operators, which satisfy certain conditions of genericity, in a certain completion of the universal enveloping algebra of a semi-simple complex Lie group. The main tools are Birkhoff’s Ergodic Theorem and an estimation ondKSfor maximal tori ofU(N). Chapter 5 is devoted to the proof of this estimation, where we follow the structure of [KS99] for the proof. In the Appendix we collect the necessary background facts of representation theory
8
Voir icon more
Alternate Text