Dunwoody Chemistry Laboratory Final Exam Protocol
5 pages
English

Dunwoody Chemistry Laboratory Final Exam Protocol

Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres
5 pages
English
Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres

Description

  • cours - matière potentielle : number
  • cours magistral
  • cours - matière potentielle : number with section
  • cours - matière potentielle : coordinator
  • cours - matière potentielle : number with the section number
  • cours magistral - matière potentielle : sections
  • cours - matière potentielle : coordinators
Tuesday, April 19, 2011 Dunwoody Chemistry Laboratory Final Exam Protocol General Instructors are to fully supervise the exams and should walk around the benches periodically. All lab safety rules shall apply during final exams having practical portions. Principals of Chemistry Labs: CHEM 1211L & CHEM 1212L Written exam (20 questions CHEM 1211L and 10 questions CHEM 1212L) 60% of the grade. 1. Students should not write on the exam.
  • masses for the practical part of the exam
  • scantrons
  • end of the exam teach student
  • red scantron
  • final exam protocol
  • assessment exam
  • practical exam
  • course coordinator
  • student
  • exam

Sujets

Informations

Publié par
Nombre de lectures 25
Langue English

Extrait

6.042/18.062JMathematicsforComputerScienceSriniDevadasandEricLehman
ProblemSet1Solutions
Due:Monday,February7at9PM
February1,2005
Problem1.Theconnectives(and),(or),and(implies)comeoftennotonlyincom puterprograms,butalsoeverydayspeech.Butdevicesthatcomputethenandoperationarepreferableincomputerchipdesigns.Hereisthetruthtablefornand:P QPnandQT T F  T F T F T T F  FT  Foreachofthefollowingexpressions,findanequivalentexpressionusingonlynandand¬(not).
(a)ASolution.¬(AnandB)
(b)ASolution.(¬A)nand(¬B)
(c)AB Solution.Anand(¬B)
Problem2.Aselfproclaimed“greatlogician”hasinventedanewquantifier,onparwith(“thereexists”)and(“forall”).ThenewquantifierissymbolizedbyUandread“thereexistsaunique”.ThepropositionPU x(x)istrueiffthereisexactlyonexforwhichP(x)istrue.Thelogicianhasnoted,“Thereusedtobetwoquantifiers,butnowtherearethree!Ihaveextendedthewholefieldofmathematicsby50%!”
(a)WriteapropositionequivalenttoUx P(xusingonlythequantifier,=,andlogicalconnectives.Solution.x(P(x)∧ ¬(y(¬(xy)P(y)))
2ProblemSet1(b)WriteapropositionequivalenttoUx P(xusingonlythequantifier,=,andlogicalconnectives.Solution.¬∀(¬P(x)∨ ¬∀(∨ ¬P(y))) Problem3.AmediatycoonhasanideaforanallnewstelevisionnetworkcalledLNN:TheLogicNewsNetwork.Eachsegmentwillbeginwiththedefinitionofsomerelevantsetsandpredicates.Theday’shappeningscanthenbecommunicatedconciselyinlogicnotation.Forexample,abroadcastmightbeginasfollows:
“THISISLNN.Letbetheset{BillMonicaKenLindaBetty}.LetD(xbeapredicatethatistrueifisdeceitful.LetL(x, y)beapredicatethatistrueiflikesy.LetG(y ,x)beapredicatethatistrueifgavegiftstoy.”
Completethebroadcastbytranslatingthefollowingstatementsintologicnotation.
(a)IfneitherMonicanorLindaisdeceitful,thenBillandMonicalikeeachother.Solution.
(¬(D(Monica)D(Linda))) (L(BillMonica)L(MonicaBill))
(b)EveryoneexceptforKenlikesBetty,andnooneexceptLindalikesKen.Solution.
(Ken∧ ¬L(x, Betty)) (KenL(x, Betty)) (LindaL(x, Ken)) (Linda∧ ¬L(x, Ken))
(c)IfKenisnotdeceitful,thenBillgavegiftstoMonica,andMonicagavegiftstosomeone.Solution.¬D(Ken)(G(BillMonica)∧ ∃G S(Monicax, )) 
(d)Everyonelikessomeoneanddislikessomeoneelse.Solution.(yz)L(, yx)∧ ¬L(x, z)
Theremainingproblemswillbegradedprimarilyontheclarityofyourproofs—notonwhetheryouhavetherightidea.Infact,ifyoucan’tfigureouttherightidea,we’llgiveittoyou–justaskyourTA!
ProblemSet13Problem4.Letbeapostiveinteger.Provethatlogisrationalifandonlyifisapowerof2.Assumeanybasicfactsaboutdivisibilitythatyouneed;juststateyourassumptionsexplicitly.Solution.Assumption:Ifnisapowerof2,thenisapowerof2.Proof.Weprovethatifisapowerof2,thenlogisrationalandviceversa.First,weprovethatifisapowerof2,thenlogisrational.Assumethatisapowerk k  of2.Then= 2forsomeinteger0.Thus,log == gol2k,whichisarational2 2  number.Next,weprovethatiflogisrational,thenisapowerof2.Assumethatlogis2 2  rational.Thatmeansthereexistintegersandsuchthat:logWecanrewritethisequationasfollows:a/b  = 2(Take2topowerofeachside.)b a  = 2(Takethebthpowerofeachside.)Thus,nisapowerof2.Byourassumption,isapowerof2.Problem5.Atriangleisasetofthreepeoplesuchthateithereverypairhasshakenhandsornopairhasshakenhands.Provethatamongeverysixpeoplethereisatriangle.Sug gestion:Initially,breaktheproblemintotwocases:1.ThereexistatleastthreepeoplewhoshookhandswithpersonX.
2.Thereexistatleastthreepeopledidn’tshakehandswithX
(Whymustatleastoneoftheseconditionshold?)Solution.Proof.Weusecaseanalysis.Letdenoteoneofthesixpeople.Therearetwopossibili ties:
1.ThereexistthreepeoplewhoshookhandswithpersonX.Nowtherearetwofur therpossibilities:(a)Amongthesethree,somepairshookhands.Thenthesetwoandformatriangle.(b)Amongthesethree,nopairshookhands.Thenthesethreeformatriangle.
4ProblemSet12.Otherwise,atmosttwopeopleshookhandswithpersonX.Thus,thereexistthreepeoplewhodidn’tshakehandswithX.Again,therearetwofurtherpossibilities:(a)Amongthesethree,everypairshookhands.Thenthesethreeformatriangle.(b)Amongthesethree,somepairdidn’tshakehands.Thenthesetwoandforatriangle.
Problem6.Letandbenonnegativerealnumbers.Thearithmeticmeanofandisdefinedtobe(y)/2,andthegeometricmeanisdefinedtobexy.Provethatthearithmeticmeanisequaltothegeometricmeanifandonlyify.Solution.Proof.Weconstructachainofifandonlyifimplications.Thearithmeticmeanisequaltothegeometricmeanifandonlyif:√ √ xy = 2xy (y4) =xy 2 2  2 +xy = 4xy 2 2  2xy 0 = (y) ==0 
Problem7.Usecaseanalysistoprovethatallintegralsolutionstotheequation1  1 1+  =m nsubjecttotheseconstraints > e0 areinthistable:m n 336  3 412 3 530 4 312 5 3 30  Theseequationsrevealsomethingfundamentalaboutthegeometryofourthreedimensionalworld;we’llrevisittheminaboutthreeweeks.
ProblemSet15Solution.Proof.Weusecaseanalysis.Sincem3,oneoffourcasesmusthold:1.m= 3.Therearenowfoursubcases:(a)n= 3.Rewritingtheequationintheform1e=1 1 +m nandsubtitutinginmn= 3 impliesthate= 6,whichisthefirstsolution.(b)n=  4.Substitutingthevaluesofmandnintotheequationshowthate=  12,whichisthesecondsolution.(c)=  5.Substitutingintotheequationshowsthat=  30,whichisthethirdsolution.(d)n6.Thisimplies:1 1 1 1 1  + =  m n 6 2 3 Thus,theleftsideoftheequationisstrictlylessthantherightforalle >0,sotherearenosolutionsinthiscase.2.m= 4.Therearetwosubcases:(a)n= 3.Subsitutinggivese =12,whichisthefourthsolution.(b)n4.Thisimplies:1 1111   =+ m n4 4 Again,theleftsideoftheequationisstrictlylessthantherightforalle >0,sotherearenosolutionsinthiscase.3.m= 5.Therearetwosubcases:(a)n= 3.Subsitutinggivese0 3=,whichisthefifthsolution.(b)n4.Thisimplies:1 1111  m n5 4Again,theequationcannothold,sotherearenosolutionsinthiscase.4.m6.Thisimplies:1 1111   =+ m n6 3Oncemore,theequationcannothold,sotherearenosolutionsinthiscase.
  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents