T u t o r i a l 1 1 E R G 2 0 4 0 C & D P r o b a b i l i t y M o d e l s a n d A p p l i c a t i o n s W e i Z h a n g D e p t . o f I n f o r m a t i o n E n g i n e e r i n g , T h e C h i n e s e U n i v e r s i t y o f H o n g K o n g h t t p : / / p e r s o n a l . i e . c u h k . e d u . h k / z w 0 0 7 ˜ A p r i l 9 , 2 0 0 9 W e i Z h a n g T u t o r i a l 1 1 ( E R G 2 0 4 0 C & D ) – 1 / 1 8v O u t l i n e O u t l i n e P r o b a b i l i t y G e n e r a t i n g F u n c t i o n s P r o b a b i l i t y G e n e r a t i n g F u n c t i o n s I n e q u a l i t i e s a n d C e n t r a l L i m i t T h e o r e m I n e q u a l i t i e s a n d C e n t r a l L i m i t T h e o r e m S u m m a r y S u m m a r y W e i Z h a n g T u t o r i a l 1 1 ( E R G 2 0 4 0 C & D ) – 2 / 1 8v v v v v v O u t l i n e P r o b a b i l i t y G e n e r a t i n g F u n c t i o n s P r o b a b i l i t y G e n e r a t i n g F u n c t i o n s P r o b a b i l i t y G e n e r a t i n g F u n c t i o n s ( c o n t . ) P r o b a b i l i t y G e n e r a t i n g F u n c t i o n s ( c o n t . ) M e t h o d S u m m a r y G e n e r a t i n g f u n c t i o n m e t h o d P r o b a b i l i t y G e n e r a t i n g F u n c t i o n s I n e q u a l i t i e s a n d C e n t r a l L i m i t T h e o r e m S u m m a r y W e i Z h a n g T u t o r i a l 1 1 ( E R G 2 0 4 0 C & D ) – 3 / 1 8F F l v v v l l F v v l v P r o b a b i l i t y G e n e r a t i n g F u n c t i o n s O u t l i n e A p . g . f ...
Tutorial 11 ERG2040C&D Probability Models and Applications
Wei Zhang Dept. of Information Engineering, The Chinese University of Hong Kong http://personal.ie.cuhk.edu.hk/˜zw007
April 9, 2009
Tutorial 11 (ERG2040C&D) 1 / 18
v Outline Probability Generating Functions Inequalities and Central Limit Theorem Summary
Wei Zhang
Outline
Probability Generating Functions
Inequalities and Central Limit Theorem
Summary
Tutorial 11 (ERG2040C&D) 2 / 18
v Outline
Probability Generating Functions v Probability Generating Functions v Probability Generating Functions (cont.) v Probability Generating Functions (cont.) v Method Summary v Generating function method Inequalities and Central Limit Theorem
A p.g.f. is nothing more than a mathematician's trick. You should think of it in terms of the denition. The p.g.f. of a discrete random variable X is dened by
g X ( z ) = E ( z X )
l l
In this tutorial we only introduce the simplest case: X takes the values 0 1 2 Why bother with p.g.f.s? F They make calculations of expectations and of some probabilities very easy. F The distribution of a random variable is easy to obtain from its p.g.f. F They make sums of independent random variables easy to handle.
P ( X = k ) −− the coefcient of z k P ( X = k ) = 1 d k dgz X ( z ) k z =0 k ! Example: g ( z )1 − z = 2 z 2 1 − 1=12 ∞ X 2 k Method 1: g ( z ) = 1 z 2 k =0 P ( X = k ) = 2 k 1 +1 Method 2: d k g X ( z P ( X = k ) = k 1! dz k ) z =0 = k 1!(2 − kz !) k +1 z =0 =2 k 1 +1
l
Distribution ⇔ p.g.f.
∞ g X ( z ) = E ( z X ) = X P ( X = k ) z k k =0
Methods for determining the distribution of functions of Random Variables: l Distribution function method: StepA:ndc.d.f.ofthefunction;StepB:ndthep.d.f.ofthe function. Please recall tutorial 7. l Transformation method. Let X denote a random variable with probability density function f ( x ) and U = h ( X ) . Assume that h ( x ) is either strictly increasing (or decreasing) then the probability density of U is:
Example A communication system has n links. P (link i fails) = p . Find P (exactly k links fail). Solution: 1) Indicator function Let X i = 1 if link i fails and X i = 0 otherwise. Then X i Bernoulli ( p ) and are i.i.d. Dene Y = X 1 + X 2 + + X n , P ( exactly k links fail ) = P ( Y = k ) . 2) Generating function Now, use expectation property, g Y ( z ) = E [ z X 1 + + X n ] = E [ z X 1 ] E [ z X 2 ] E [ z X n ] .
l l
Y is a binomial random variable!
E [ z X i ] = z 0 (1 − p ) + z 1 p = (1 − p ) + pz
d k dgz Yk ( z )=( n − n ! k )! p k (1 − p + pz ) n − k P ( Y = k ) = C nk p k (1 − p ) n − k
Hence, g Y ( z ) = (1 − p + pz ) n . Thus, for 0 ≤ k ≤ n ,