THE BLOW UP OF CRITICAL ANISTROPIC EQUATIONS WITH CRITICAL DIRECTIONS
20 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

THE BLOW UP OF CRITICAL ANISTROPIC EQUATIONS WITH CRITICAL DIRECTIONS

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
20 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

THE BLOW-UP OF CRITICAL ANISTROPIC EQUATIONS WITH CRITICAL DIRECTIONS JEROME VETOIS Abstract. We investigate blow-up theory for doubly critical anisotropic problems in bounded domains of the Euclidean space. 1. Introduction Anisotropic operators modelize directionally dependent phenomena. In this paper, we con- sider problems posed on domains in the Euclidean space Rn in dimension n ≥ 2, and we provide ourselves with an anisotropic configuration ??p = (p1, . . . , pn) with pi > 1 for all i = 1, . . . , n. We define the anisotropic Laplace operator ∆??p by ∆??p u = n∑ i=1 ∂ ∂xi ?pixiu , (1.1) where ?pixiu = |∂u/∂xi| pi?2 ∂u/∂xi for all i = 1, . . . , n. Nonlinear equations of the type ∆??p u = f (·, u) appear in several places in the literature. They appear, for instance, in biology, see Bendahmane–Karlsen [11] and Bendahmane–Langlais–Saad [13], as a model describing the spread of an epidemic disease in heterogeneous environments. They also emerge, see Antontsev–Dıaz–Shmarev [5] and Bear [10], from the mathematical description of the dynamics of fluids with different conductivities in different directions. We consider anisotropic problems of critical growth of the type { ?∆??p u = ? |u| p??2 u+ f (·, u) in ? , u ? D1, ??p (?) , (1.2) where ∆??p is as in (1.1), ?

  • let ?

  • direction being

  • tree decompositions

  • configuration ??p

  • bubble tree

  • critical directions

  • ??p

  • anisotropic problems

  • critical anisotropic


Informations

Publié par
Nombre de lectures 5
Langue English
Poids de l'ouvrage 1 Mo

Extrait

THE
BLOW-UP OF CRITICAL ANISTROPIC EQUATIONS WITH CRITICAL DIRECTIONS
´ ˆ ´ JEROME VETOIS
Abstract.for doubly critical anisotropic problems in boundedWe investigate blow-up theory domains of the Euclidean space.
1.Introduction
Anisotropic operators modelize directionally dependent phenomena. In this paper, we con-sider problems posed on domains in the Euclidean spaceRnin dimensionn2, and we provide ourselves with an anisotropic configurationp= (p1, . . . , pn) withpi>1 for alli= 1, . . . , n. We define the anisotropic Laplace operator Δ−→pby nΔ−→pu=X1∂xirxpiiu ,(1.1) i= whererxpiiu=|∂u/∂xi|pi2∂u/∂xifor alli= 1, . . . , n. Nonlinear equations of the type Δpu=f(, u appear, for instance, in biology, They) appear in several places in the literature. see Bendahmane–Karlsen [11] and Bendahmane–Langlais–Saad [13], as a model describing the spread of an epidemic disease in heterogeneous environments. They also emerge, see Antontsev–D´ıaz–Shmarev [5] and Bear [10], from the mathematical description of the dynamics of fluids with different conductivities in different directions. We consider anisotropic problems of critical growth of the type Δpu=λ|u|p2u+f(, u) inΩ , (uD1,−→p(Ω),(1.2) where Δpis as in (1.1),Ωis a domain ofRn,D1,−→p(Ω) is the anisotropic Sobolev space defined as the completion of the vector space of all smooth functions with compact support inΩwith respect to the normkukD1,p(=Pnk∂u/∂xikLpi(Ω),pis the critical Sobolev Ω)i=1 exponent (see (1.4) below),λis a positive real number, andfis a Caratheodory function in Ω×Rsatisfying the growth condition |f(, u)| ≤C|u|q1+ 1a.e. inΩ(1.3) for some real numberqin (1, p) and for some positive constantCindependent ofu. We are concerned with the doubly critical situationp+=p, wherep+ (= maxp1, . . . , pn) is the maximum value of the anisotropic configuration andpis as above the critical Sobolev exponent for the embeddings of the anisotropic Sobolev spaceD1,−→p(Ω) into Lebesgue spaces. In this setting, not only the nonlinearity has critical growth, but the operator itself has critical growth in particular directions of the Euclidean space. As a remark, the notion of critical direction is a pure anisotropic notion which does not exist when dealing with the Laplace
Date:February 25, 2010.Revised:September 18, 2010. Published inNoDEA Nonlinear Differential Equations and Applications18(2011), no. 2, 173–197. 1
CRITICAL ANISOTROPIC EQUATIONS WITH CRITICAL DIRECTIONS
2
operator or thep-Laplace operator. Giveni= 1, . . . , n, thei-th direction is said to be critical ifpi=p if subcritical, resp.pi< p directions induce a failure in the rescaling. Critical invariance rule associated with (1.2). Given an anisotropic configurationpsatisfyingPni=11/pi>1 andpjn/ Pni=1p1i1for allj= 1, . . . , n, the critical Sobolev exponent is equal to p=Pnnp1i1.(1.4) i=1 Possible references on anisotropic Sobolev spaces are Besov [14], Haˇskovec–Schmeiser [38], KruzhkovKolodı¯ı˘[40],KruzhkovKorolev[41],Lu[47],Nikol0sokakı´n,45[,]55dan,]´R[ı35ks˘i Troisi [65]. We aim in describing the asymptotic behaviors in energy space of Palais–Smale sequences associated with problem (1.2). Before stating our main result, let us fix some notations. For anyµ >0 and any pointa= (a1, . . . , an) inRn, we define the affine transformation τµp,a:RnRnby τµ−→pa,(x1, . . . , xn) =µp1p1p(x1a1), . . . , µnppnp(xnan).(1.5) As is easily checked, (1.5) provides a general rescaling invariance rule associated with problem (1.2) withf particular,0. InusolvesΔpu=|u|p2uinΩif and only if the function v=µ1uτµ−→p,a1solvesΔpv=|v|p2vinτµp,a(Ω), where τµp,a1(x1, . . . , xn) =µpp1p1x1+a1, . .pnp+an. . , µnpxn Given (µα)αof positive real numbers converging to 0, (a sequence xα)αa converging sequence inRnλa positive real number,Ua nonempty, open subset ofRn, andua nontrivial solution , , inD1−→p(U) of the problem =λ (uΔD−→p1u,p(U)|u,|p2uinU ,(1.6) where Δ−→pis as in (1.1), we callp-bubbleof centers (xα)α, weights (µα)α, multiplierλ, domain U, and profileu, the sequence (Bα)αdefined by 1−→ Bα=uτµpα,xα µα µ−→pα,xα lts can find existence and regularity res Oneis as in (1.5). for problem for allα, whereτu (1.6)inV´etois[68].Inthefollowing,weimplicitlyextendprolesofbubblesby0outsideof their domains so as to regard them as functions inD1,p(Rn). With the above notations, we define the energyE(Bα) of ap-bubble (Bα)αby n E(Bα) =X1 i=1piZRnuxipidxpλZRn|u|pdx=i=nX1pppipiZRnuxipidx ,(1.7) the second equality in (1.7) being obtained by testing (1.6) withuand integrating by parts. We approximate problem (1.2) with the problems (uΔD−→p1u,−→p(=λΩα)|,u|rα2u+f(, u) inΩ ,(1.8)
  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents