7 jours d'essai offerts
Cet ouvrage et des milliers d'autres sont disponibles en abonnement pour 8,99€/mois

Publications similaires

Concours CCP 2004 Epreuvesp´ecique-Fili`erePC MATHEMATIQUES 2 Dure´e:4heures
Les calculatrices sont interdites **** N.B.:Lecandidatattacheralaplusgrandeimportance`alaclarte´, a`lapre´cisionet`alaconcisiondelare´daction. Siuncandidatestamene´a`repe´rercequipeutluisemblerˆetreuneerreurde´nonce´, il le signalera sur sa copie et devra poursuivre sa composition enexpliquantlesraisonsdesinitiativesquilae´t´eamen´ea`prendre. **** LapartieIIpeutˆetretrait´eeind´ependammentdespartiesIetIII.
Partie I +X s n Onconside`relase´rieenti`eren zde la variable complexezu,`osest un nombre n=1 r´eeldonn´e.
I.1re`e.imrete´Dyarelrenondeconvergencedceteet´sreeineit I.2Dans cette question,z=e.drbcennmonguee´isule1emodexedompl +X s n I.2.1Etudiez la convergence den znalscesao`uds >1 ainsi que dans le n=1 casou`s0. +X s n I.2.2asecu0o`Dslan< snegrevnoedecet,´1acrlieudn zpourz= 1. n=1 I.2.3oTjuadsnuosrcale`uso0< s1, on suppose quez6= 1.On poseS0= 0 n X k et pour tout nombre entiernN,Sn=z. k=1 1 Montrer que|Sn| ≤M(θ) pour toutnN, avecM(θ) =. θ sin   2 k Ene´crivantzsous la formeSkSk1pour tout nombre entierkN, montrer que : n n1 X X ∗ −s ksss nN, kz=Sk[k(k] ++ 1)Snn . k=1k=1
1