7 jours d'essai offerts
Cet ouvrage et des milliers d'autres sont disponibles en abonnement pour 8,99€/mois
concours ESTP-ENSAM-ECRIN-ARCHIMEDE Epreuve de MATHEMATIQUES 3 Filie`rePC dur´ee4heures
Lesdeuxprobl`emessontinde´pendants.
Proble`meA
2 Si (p, q)(N),Mp,q(Rgnele)d´esiRirotedlecapsceveas`eatsmceriplignes etq,sa`noenclotsciencoere´elsetMp(R) =Mp,p(R). Un´ele´mentdeMp,q(R)tnes´eot(ai,j),1ip ,1jq. p Un vecteur deR ,snadecie,quninotrmasaetoptre´a`asabesacrapMp,1(Rtteremelos).t´esntnoamˆeparl SiNest une norme surMp,q(R),la suite (An),ou`nN ,e´´lmenetsdedMp,q(R) admet une limiteBdans n Mp,q(Rmeleeutsie)sle(e´letirealustnisN(AnB)) apour limite 0 n On note : limAn=BlimN(AnB) = 0 n+n+Les coefficients de la matrice limiteBsont les limites des coefficients de la matriceAn. Partie I + Onadmettraquelapplication,not´eekk,deMp,q(R) dansRe´dr:paien q X A∈ Mp,q(R),kAk= max|ai,j| 1ip j=1 est une norme surMp,q(R),nsdasulaopadeet´euqellet,roupeditetme`eblrNutera(nabuvecuecrisd´ e´vident): A∈ Mp,q(R),B∈ Mq,r(R),kABk ≤ kAk kBk 1) SiA∈ Mp(R) , on note (λi) lesvaleurs propres deAdansC ,etρ(A) = max|λi|. 1ip 1ip Montrer que : k k   i[1, p],kN ,|λi| ≤A N End´eduirequesiAest diagonalisable alors : k limA= 0ρ(A)<1 k+(0d´esignelamatricenulledeMp(R) ) 2)A∈ Mp(R), b∈ Mp,1(R), Ainversible. Onconside`reuneme´thodeder´esolutionapproche´edele´quationAx=b,`oubonn´eetsedtxest l’inconnue. On de´composelamatriceAsous la formeA=MNo,u`MetNedstnemesont´el´deuxMp(R) , avecMinversible 1 etM Ndiagonalisable. 11 Le´quationAx=but`a´equivax=M Nx+M b.   (n) Onde´nitunesuited´ele´mentsdeMp,1(R), xo`u,nNpar : n (0) (n+1)1 (n)1 x∈ Mp,1(R) etnN , x=M Nx+M b (n) (0) a) Exprimerxen fonction deM, N, xet de la solutionxnioatque´ledAx=b.   (n) b)Donneruneconditionn´ecessaireetsusantepourquelasuitexconverge versx. n Partie II On donne la matriceA∈ Mp(R).   21 0. . . .0 1 21 0. . . . 01 2. . . . . .0. .1. . . A= . . .1 2. . . . . . . . .1 0     . . . . .1 21 0 0. . .01 2
M99RP3E.tex - page 1