Cet ouvrage et des milliers d'autres font partie de la bibliothèque YouScribe
Obtenez un accès à la bibliothèque pour les lire en ligne
En savoir plus

Partagez cette publication

ENSAE2001,option´economie.dure´e4heures
PROBLEME 1
Onconside`relesfonctionsd´eniespar Z Z x x t tdt f(t) =etF(x) =f(t) dt=3 3 31 13 t1t1 x x √ √ 3 3 ou`lafonctiont7→tniesurestd´eR(par exemple8 =2). Lobjetduproble`meestle´tudedelafonctionF. On noteCerebruocase.ivatntse´epr 1)Domaineded´enition: ´ a)Eidutalre´tgearelssiuavtnconvergencedesina`saparereluclaconu(qescherchne): Z ZZ 1 +0 0 I=f(t) dt, J=f(t) dt, J=f(t) dt 0 2−∞ b)Justifier queF´etdienus]res− ∞,0[. c)endoitine´dalregnopeutprolrerquonoMtnF]0`a,+[ en posant  ZZ 1x F(x) =f(t) dt+f(t) dtpourx >0 etx6= 1 1 1 x F(1) = 0 ´ 2) Etudeaux bornes : a)Dinrmte´emilselrealedsetifonctionFed´tinionauxbornseedosdnmoiaenedD=R. b)Montrer que, pour toutx <0, on a : Z Z 0x 1 F(x)x=f(t) dt+g(t) dt,ou`g(t) =11   13 1 0 x13 t Z 0 ´ c)eEocvnreegutidrealnt´egralncedeliK=g(t) dt −∞ End´eduirelalluredelacourbeCdeFpourx→ −∞. d)+enueriaFdean´etuueenalog. 3) Variations: 0 a)Justifier que la fonctionFvablesurdtseire´D=]− ∞,0[]0,1[]1,+[eCe.´vire´dasrelucla et´etudiersonsigne. 10 b)Montrer queFest de classeCeepncntoireieuqte1nre´vFs’annule sans changer de signe (on dit queCnpointdpr´esenteune)1.nieixno c)ne.nsigersotudiC´eadv´ricualrlleFedee´teeseednoc d)dslefanotcoinse´relcresbmRsataunnsdatstaulesnoitairaveduaelbF. 4) Courbe:Dessiner l’allure de la courbeC.