COMBINATORICA
13 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

COMBINATORICA

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
13 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

COMBINATORICA 24 (3) (2004) 427-440 MATCHING POLYNOMIALS AND DUALITY BODO LASS (Received February 20, 2001; Accepted November 29, 2001) Let G be a simple graph on n vertices. An r-matching in G is a set of r independent edges. The number of r-matchings in G will be denoted by p(G,r). We set p(G,0)=1 and define the matching polynomial of G by µ(G,x):= ∑bn/2c r=0 (?1) r·p(G,r)·xn?2r and the signless matching polynomial of G by µ(G,x):= ∑bn/2c r=0 p(G,r)·x n?2r. It is classical that the matching polynomials of a graph G determine the matching poly- nomials of its complement G. We make this statement more explicit by proving new duality theorems by the generating function method for set functions. In particular, we show that the matching functions e?x2/2µ(G,x) and e?x2/2µ(G,x) are, up to a sign, real Fourier transforms of each other. Moreover, we generalize Foata's combinatorial proof of the Mehler formula for Hermite polynomials to matching polynomials. This provides a new short proof of the classical fact that all zeros of µ(G,x) are real.

  • ?∞ e?x2

  • matching polynomials

  • generating function method

  • short proof

  • inclusion- exclusion principle

  • generating function

  • classical orthogonal

  • signless matching polynomial


Sujets

Informations

Publié par
Nombre de lectures 18
Langue English

Extrait

COMBINATORICA24(3)(2004)427-440MATCHINGPOLYNOMIALSANDDUALITYBODOLASS(ReceivedFebruary20,2001;AcceptedNovember29,2001)LetGbeasimplegraphonnvertices.Anr-matchinginGisasetofrindependentedges.Thenumberofr-matchingsinGwillbedenotedbyp(G,r).Wesetp(G,0)=1anddefinethematchingpolynomialofGbyµ(G,x):=r=0(1)rp(G,r)xn2randthesignlessmatchingPbn/2cpolynomialofGbyµ(G,x):=bn/2cp(G,r)xn2r.0=rPItisclassicalthatthematchingpolynomialsofagraphGdeterminethematchingpoly-nomialsofitscomplementG.Wemakethisstatementmoreexplicitbyprovingnewdualitytheoremsbythegeneratingfunctionmethodforsetfunctions.Inparticular,weshowthatthe22matchingfunctionsex/2µ(G,x)andex/2µ(G,x)are,uptoasign,realFouriertransformsofeachother.Moreover,wegeneralizeFoata’scombinatorialproofoftheMehlerformulaforHermitepolynomialstomatchingpolynomials.Thisprovidesanewshortproofoftheclassicalfactthatallzerosofµ(G,x)arereal.Thesamestatementisalsoprovedforacommongeneralizationofthematchingpolynomialandtherookpolynomial.1.Introductioni.e.E,thesetofedges,isasubsetofV2,thefamilyofall2-elementsubsetsofV.LetVbeafinitesetofvertices,n:¡=|¢V|;andletG=(V,E)beasimplegraph,ThecomplementofGisthegraphG=(V,E)withE=V2\E.¢¡Anr-matchinginGisasetofredgesofG,notwoofwhichhaveavertexincommon.Clearly,r≤bn/2c.Ifr=bn/2c,thenanr-matchingofGiscalledperfectifnisevenandquasi-perfectifnisodd.Letp(G,r)bethenumberofr-matchingsinG,withtheconventionthatp(G,0):=1.ThematchingpolynomialofGis(see[3],chapter1)µ(G,x):=(1)rp(G,r)xn2r,bnX/2c0=rwhilethesignlessmatchingpolynomialreadsµ(G,x):=p(G,r)xn2r.bnX/2c0=rMathematicsSubjectClassification(1991):05C70;05A15,05A20,12D10
  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents