Discovering hook length formulas by an expansion technique
108 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Discovering hook length formulas by an expansion technique

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
108 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

Discovering hook length formulas by an expansion technique Guoniu Han IRMA, Strasbourg CALIN/LIPN 11111 1

  • robinson-schensted correspondence

  • young tableau

  • discovering hook

  • guoniu han

  • hook

  • partition ?


Sujets

Informations

Publié par
Nombre de lectures 6
Langue English

Extrait

Discovering hook length formulas
by an expansion technique
Guoniu Han
IRMA, Strasbourg
CALIN/LIPN 11111
1Hook length formulas for partitions and trees
Summary:
• Some well-known examples
• How to discover new hook formulas ?
• The Main Theorem
• Specializations
• Number Theory
• Hook formulas for binary trees
2Some well-known examples: Hook length multi-set
2 1
4 3 1
v
5 4 2
9 8 6 3 2 1
Partition Hook length of v Hook lengths
λ = (6,3,3,2) h (λ) = 4 (λ)
H
v
The hook length multi-set of λ is
(λ) ={2,1,4,3,1,5,4,2,9,8,6,3,2,1}
H
3Some well-known examples: permutations
f : the number of standard Young tableaux of shape λ
λ
Frame, Robinson and Thrall, 1954
n!
Q
f =
λ
h
h∈ (λ)
H
4Some well-known examples: permutations
f : the number of standard Young tableaux of shape λ
λ
Frame, Robinson and Thrall, 1954
n!
Q
f =
λ
h
h∈ (λ)
H
P
2
Robinson-Schensted correspondence: f = n!
λ
λ⊢n
X Y
1
|λ| x
x = e
2
h
λ∈P
h∈ (λ)
H
5Some well-known examples: involutions
Robinson-Schensted correspondence: The number of standard
Young tableaux of{1,2,...,} is equal to the number of invo-
lutions of order n.
X Y
2
1
|λ| x+x /2
x = e
h
λ∈P
h∈ (λ)
H
6Some well-known examples: partitions
Euler: Generating function for partitions:
X Y Y
1
|λ|
x 1 =
k
1−x
λ∈P h∈ (λ) k≥1
H
7Some well-known examples: binary trees
hook length for unlabeled binary trees
T T
6
◦ ◦
5 5
• ◦
@ @
1
3
@ @
• • ◦ ◦
@ @
@ @
• • ◦ ◦
1 1
(T) = 5 (T) ={1,1,1,3,5,6}
H H
v
8Some well-known examples: binary trees
f : the number of increasing labeled binary trees
T
n!
Q
f =
T
h
h∈ (T)
H
9Some well-known examples: binary trees
Each labeled binary tree with n vertices is in bijection with a
permutation of order n
X Y
1
n! = n!
h
v
v∈T
T∈B(n)
10

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents