Cet ouvrage et des milliers d'autres font partie de la bibliothèque YouScribe
Obtenez un accès à la bibliothèque pour les lire en ligne
En savoir plus

Partagez cette publication

Chapitre 9
Estimateursaumaximumde vraisemblance
Aveccechapitrenouscommen¸consl´etudedequelquesoutilscentrauxdelastatistique.
9.1 Estimateur
De´nition:Soitn >0 un entier. Nous appelleronsnoliuenilntndlo-´haecLtoute suiteX1, .. .,Xn dev.a.inde´pendantesdeloiL. Lastatistique-pratiqueestunensembledetechniquesdetraitementdedonn´eesqui,facea`ladonne´e denserbmongsulpuo()setrueral´en´tvecemenx1, . . .,xn-geescilntnalo´raahceudorpstipseleno-ta`d-ri unprotocoleexp´erimentalpropreaudomaineconside´r´e(sociologie,contrˆoledequalit´e,etc.)-choisitun nadelsdenioitn´essed-icnomruopsuahtn´-ceansuliolteaintmeded`elemath´ematiqeuusgge´artnnurt cesdonne´es. Prenonslexempledunre´fe´rendum(oudunple´bicite)ou`lese´lecteursnepeuventquer´epondrepar ouiounon(lesabstentions´etantsansinuencesurlere´sultat,cequiexclutlescasou`ilyaun quorum`aatteindre).Choisissonsn= 1000, et posonsxi= 1 si lai´gee´dcealerme`-epersonneinterro savoircequelleiravoteretvouloirvoteroui(siellede´clarenepassavoirounepasenvisagerdevoter, on´ecartecettere´ponsedelapr´esenteanalyse)etxi0sielled=uoolriove´lcrave.rtenno Cettesituationsimpleestg´en´eralementmod´elise´eparun1000-e´chantillonX1, .. .,X1000d’une loi de BernoulliB(1, pstueseitniselem),etonconsid`qereleunipoenoienstvefaduuruiop0.5. Onestalorsconfronte´auproble`medestimerlavaleurdepnoceisidomelle`d.nsDaliil)i(Bernoud´er´eic laloidesgrandsnombresvienta`notresecours:elleassurequelimn+(X1+. . .+Xn)/n=E(X1) =p; on dit dans ce cas quepˆ := (X1+. . .+Xn)/nest unestimateurerte`duparamp; en pratique, on choisit alorsp=p:= (x1+. . .+x1000)/1000. Nousnousint´eresseronsicia`laequrietm´rapauetsqiatits,iolalu`oL=L(θtˆetrecatenuepeuer)-r act´erise´parunparam`etreθ, qui est un nombre ou un vecteur. Ainsi, par exemple, siXiB(1, p), alors θ=pest un nombre, mais siXiN(µ, σ), alorsθ= (µ, σ) est un vecteur, tout comme dans le cas d’un d´epipe´o`ulonpeutchoisirθ= (p1, . . . , p5) (etp6= 1(p1+. . .+p5)) etpk:=Pθ({Xi=k}). ˆ ˆˆ D´enition:On dit queθ: (x1, . . . , xn)7→θn:=θ(x1, . . . , xn) est unestimateurconvergeant versθsi ˆ et seulement si , en loi, on aθ= limn+θ(X1, . . . , Xn) pour toute suite de v.a.Xid´inpeneadtnsed,e loiL(θ).
9.2 Vraisemblance 9.2.1Heuristiqueetde´nition Nousavonsvuquelaloidesgrandsnombresfournitspontane´mentunestimateurdelespe´rance duneloi,maissilonrechercheunem´ethodeunpeuge´ne´ralepourdevinerunestimateur,laudohed´mte maximum de vraissemblance.Eceoinvleciinprepic:caentveouesgi´etartsenutse ∗ ∗ Siune´chantillonageaproduitlasuiteniex. .,, .xdeserembnocanouqtedtisiohelismod´er 1n cette situation par unnnolahc´e-litnX1. .,, .Xnedolineadtnseina.epd´v.deL(θ), et si le choix de la 43