La lecture en ligne est gratuite
Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres

Partagez cette publication

Du même publieur

cm1 2 34 56 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
The University of the State of New York • THE STATE EDUCATION DEPARTMENT • Albany, New York 12234 • www.nysed.gov
Reference Tables for
Physical Setting/EARTH SCIENCE
Radioactive Decay Data Specific Heats of Common Materials
RADIOACTIVE DISINTEGRATION HALF-LIFE MATERIAL SPECIFIC HEAT
(years)ISOTOPE (Joules/gram • °C)
14 3 Liquid water 4.1814Carbon-14 N 5.7 × 10C
Solid water (ice) 2.11
40
40 Ar 9 Water vapor 2.00KPotassium-40 1.3 × 1040
Ca Dry air 1.01
9238 206 4.5 × 10Uranium-238 U Pb Basalt 0.84
Granite 0.79
1087 87 4.9 × 10Rubidium-87 Rb Sr Iron 0.45
Copper 0.38
Lead 0.13Equations
distance between foci
Eccentricity = Properties of Waterlength of major axis
change in field value Heat energy gained during melting . . . . . . . . . . 334 J/gGradient =
distance
Heat energy released during freezing . . . . . . . . 334 J/g
change in value Heat energy gained during vaporization . . . . . 2260 J/gRate of change =
time Heat energy released during condensation . . . 2260 J/g
mass
Density = Density at 3.98°C . . . . . . . . . . . . . . . . . . . . . . . . 1.0 g/mLvolume
Average Chemical Composition
of Earth’s Crust, Hydrosphere, and Troposphere
CRUST HYDROSPHERE TROPOSPHEREELEMENT
(symbol) Percent by mass Percent by volume Percent by volume Percent by volume
Oxygen (O) 46.10 94.04 33.0 21.0
Silicon (Si) 28.20 0.88
Aluminum (Al) 8.23 0.48
Iron (Fe) 5.63 0.49
Calcium (Ca) 4.15 1.18
Sodium (Na) 2.36 1.11
Magnesium (Mg) 2.33 0.33
Potassium (K) 2.09 1.42
Nitrogen (N) 78.0
Hydrogen (H) 66.0
Other 0.91 0.07 1.0 1.0
2010 EDITION Eurypterus remipes
This edition of the Earth Science Reference Tables should be used in the
classroom beginning in the 2009–2010 school year. The first examination for
which these tables will be used is the January 2010 Regents Examination in
New York State FossilPhysical Setting/Earth Science.L
o
w
l
n
a
n
d
s
d
s
2 Physical Setting/Earth Science Reference Tables — 2010 Edition
Generalized Landscape Regions of New York State
Interior
Grenville Province
Lowlands
(Highlands)
Interior Lowlands
Adirondack
Mountains
Lake Ontario
Tug Hill
Plateau
Erie-Ontario Lowlands
(Plains)
Lake Erie
Allegheny Plateau
The Catskills
Key
Major geographic province boundary
Landscape region boundary
State boundary
International boundary
N
Miles
02100 3040 50
WE
020 40 60 80
S
Kilometers
Hudson Highlands
Manhattan Prong
i
n
P
l
a
l
s
ta
o
a
c
C
t
i
n
a
t
l
A
)
s
d
n
a
l
p
St. Lawrence Lowlands
U
(
u
a
e
t
l
a
P
n
a
New England Province
(Highlands)
i
h
c
a
l
Newark
Lowlands
a
p
p
A
k
L
H
w
u
o
d
T
aconic Mountains
a
C
s
o
h
h
n
w
a
-
o
m
M
p
l
l
a
i
n
aR
a
r
a
g
a
i
N
Physical Setting/Earth Science Reference Tables — 2010 Edition 3
Generalized Bedrock Geology of New York State
modified from
GEOLOGICAL SURVEY
NEW YORK STATE MUSEUM
1989
GEOLOGIC PERIODS AND ERAS IN NEW YORK
CRETACEOUS and PLEISTOCENE (Epoch) weakly consolidated to unconsolidated gravels, sands, and clays
LATE TRIASSIC and EARLY JURASSIC conglomerates, red sandstones, red shales, basalt, and diabase (Palisades sill)
Dominantly
PENNSYLVANIAN and MISSISSIPPIAN conglomerates, sandstones, and shales
sedimentary
DEVONIAN
limestones, shales, sandstones, and conglomerates
} origin
SILURIAN also contains salt, gypsum, and hematite.
SILURIAN
}
ORDOVICIAN
limestones, shales, sandstones, and dolostones
}
CAMBRIAN
CAMBRIAN and EARLY ORDOVICIAN sandstones and dolostones
moderately to intensely metamorphosed east of the Hudson River
Dominantly
CAMBRIAN and ORDOVICIAN (undifferentiated) quartzites, dolostones, marbles, and schists
metamorphosed
intensely metamorphosed; includes portions of the Taconic Sequence and Cortlandt Complex
rocks
TACONIC SEQUENCE sandstones, shales, and slates }
N
Miles
slightly to intensely metamorphosed rocks of CAMBRIAN through MIDDLE ORDOVICIAN ages
02100 3040 50
MIDDLE PROTEROZOIC gneisses, quartzites, and marbles
WE
Lines are generalized structure trends.
Intensely metamorphosed rocks
020 40 60 80OTEROZOIC anorthositic rocks } (regional metamorphism about 1,000 m.y.a.)
Kilometers S
U
N
D
O
S
D
N
A
L
S
I
G
N
O
L
v
i
e
ro
t
.
s
O
a
r
E
u
K
.
C
y
r
a
n
4 Physical Setting/Earth Science Reference Tables — 2010 Edition
a
C
C.
Gree
n
t la
ia
s n
n
.
r
e
d
C
o
C
r
W
.
o
f
ad
Labr
i
l
.
.
a
C
.
C
C
.
a
l
C
C
N
S
o
r
t
a
h
l
G
o
a
C.
a
al
k
i
i
t
ri
E
u e
in
.
nt
r
n
o
C
r
u
t
.
e
o
e
q
r
t
r
a
C
al
r
t
r
u
o
u
polar Current
c
i
c
h
a
C.
c
u
rcum
r
r
t
u
er
c Ci
C.
i
o
e
l
t
rcti
f
u
nt
q
E a
n
a
q
nta
ci
t
E
E Cou
qu
i
A
Surface Ocean Currents
20° 40° 60° 80° 100° 120° 140° 160° 180° 160° 140° 120° 100° 80° 60° 40° 20° 0° 20°
80°
Greenland
Arctic Ocean
Arctic Circle
(66.5° N)
60°
Asia
c
Europe
North
America
40°
North
North
Pacific
Atlantic
Florida C.
Ocean
Ocean Tropic of Cancer
(23.5° N)
India
20°
Africa
Africa u
Equatorial
Countercurrent
0° Equator
atorial
qu
r
South
America
20°
Indian
Tropic of Capricorn
Ocean
(23.5° S)
Australia South South
Pacific Atlantic
Ocean Ocean
40°
60°
Antarctic Circle
(66.5° S)
Southern Ocean
Antarctica Antarctica
80°
20° 40° 60° 80° 100° 120° 140° 160° 180° 160° 140° 120° 100° 80° 60° 40° 20° 0° 20°
NOTE: Not all surface ocean currents are shown.
Key
Warm currents
Cool currents
i
a
a
t
h
o
o
E
W
t
r
C
t
r
e
n
t
u
N
o
a
l
a
u
r
s
P
n
t
o
r
i
C
q
E
q
u
a
a
u
e
a
r
h
N
a
o
l
l
E
q
p
t
t
m
o
h
E
s
u
r
A
h
c
o
t
t
r
r
r
t
h
t
C
i
N
o
t
t
c
N
u
t
i
u
o
A
nt
a
r
c
o
h
A
S
o
r
.
a
C
i
S
a
a
u
.
l
k
t
C
.
C
l
G
r
.
s
e
C
a
t
s
m
e
a
.
a
e
h
n
r
N
C
.
t
E
t
o
A
a
S
l
r
l
f
u
a
C
w
G
n
o
r
e
c
i
d
A
g
u
i
g
C
i
.
l
h
l
a
B
a
n
h
o
s
m
C
.
.
.
e
a
C
C
a
i
l
l
n
d
i
a
i
n
z
s
g
a
a
r
a
h
C
l
r
u
.
a
t
k
P
B
e
e
K
l
y
r
l
s
s
u
a
C
a
.
u
C
A
.
C
Fo
-
a
h
d
n
e
i
g
M
e
c
a
i
n
r
n
f
A
t
g
s
c
a
E
a
h
nch
e
r
T
e
e
g
l
d
i
i
R
h
Physical Setting/Earth Science Reference Tables — 2010 Edition 5
C
n
a
i
-
d
Arabian
Plate
n
u
I
S
-
r
o
u
d
e
t
P
i
h
e
M
a
s
t
I
n
d
i
a
n
A
R
i
d
l
g
e
e
u
t
Tectonic Plates
Iceland
Hot Spot
North American
Eurasian
Plate
Eurasian
Plate
Plate
Yellowstone
i
Juan de Hot Spot
Fuca Plate
Canary
Islands
Hot Spot
San Andreas
Fault
African
Philippine
Plate Hawaii
Plate
Hot Spot Cocos
Plate
Pacific
South
Fiji Plate Galapagos
Plate Hot Spot
American
Plate
Easter Island
St. Helena
Hot Spot
Hot Spot
Indian-Australian Nazca
Plate
Plate
Tasman
Hot Spot
Scotia
Plate
Bouvet
Hot Spot
Antarctic Antarctic
Sandwich
Plate Plate
Plate
overriding
Key
plate
subducting
Transform plate boundary Complex or uncertain Mantle
Relative motion at
plate
(transform fault) plate boundary hot spot
plate boundary
Divergent plate boundary
Convergent plate boundary
(usually broken by transform
(subduction zone)
faults along mid-ocean ridges)
NOTE: Not all mantle hot spots, plates, and
boundaries are shown.
a
n
T
r
Caribbean
Plate
e
E
n
c
h
a
M
s
Southwest Indian
Ridge
t
t
t
l
f
A
a
-
i
n
a
T
P
d
t
i
R
a
i
R
i
r
c
c
d
i
f
r
i
c
M
g
e
i
R
T
n
R
i
n
a
T
d
e
g
i
nt
i
c
c
r
a
t
l
A
e
dE
r
H
e
a
t
a
M
o
n
1000
500
100
50
10
5
1
0.5
0.1
0.05
0.01
M
e
d
e
l
t
t
/
a
i
o
n
r
m
g
o
P
r
r
p
e
s
s
h
i
s
s
u
r
e
m
i
o
n
M
e
l
n
l
t
a
o
i
i
ti
r
W
n
i
u
e
s
at
he
g
o
B
(
ri
U
n
p
pl
g
d
ift
&
e
)
E
ro
e
n
s
D
io
r
a
n
u
m
s
s
s
i
e
h
r
Rock Cycle in Earth’s Crust Relationship of Transported
Particle Size to Water Velocity
100.0
Boulders
25.6
Cobbles10.0SEDIMENTS 6.4
SEDIMENTARY
1.0 PebblesROCK
0.2
0.1
Sandp
0.01
0.006
IGNEOUS
SiltROCK 0.001
0.0004METAMORPHIC
ClayROCK 0.0001
MAGMA
STREAM VELOCITY (cm/s)
This generalized graph shows the water velocity
needed to maintain, but not start, movement. Variations
occur due to differences in particle density and shape.
Scheme for Igneous Rock Identification CRYSTAL TEXTURE
SIZE
Non-Obsidian Basaltic glass
vesicular(usually appears black) Glassy
Pumice Scoria Vesicular
(gas
VesicularVesicular rhyolite Vesicular basalt pockets)
andesite
Fine
Basalt
AndesiteRhyolite
Diabase
Peri- Non-Diorite CoarseGranite dotite vesicularGabbro
Very
Pegmatite coarse
LIGHTER COLOR DARKER
DENSITYLOWER HIGHER
FELSIC MAFICCOMPOSITION
(rich in Si, Al) (rich in Fe, Mg)
100% 100%
Potassium
feldspar
(pink to white)
75% 75%
Quartz
(clear to
Plagioclase feldspar
white)
(white to gray)
50% 50%
Pyroxene
(green)
Biotite
(black)
Olivine25% 25%
(green)
Amphibole
(black)
0% 0%
6 Physical Setting/Earth Science Reference Tables — 2010 Edition
P
r
r
o
o
/
m
d
n
a
r
t
a
e
o
t
g
/
n
a
M
d
W
n
o
e
i
ea
t
n
i
H
th
l
t
a
e
e
(U
ri
a
n
n
p
g
M
t
lif
&
t)
o
n
E
i
r
os
S
t
e
i
o
c
o
l
n
i
a
m
d
p
i
e
f
m
C
i
o
c
C
a
t
i
o
n
(
U
W
e
a
t
p
h
l
e
i
r
MINERAL COMPOSITION CHARACTERISTICS IGNEOUS ROCKS
(relative by volume)
ENVIRONMENT OF FORMATION
INTRUSIVE EXTRUSIVE
(Plutonic)
(Volcanic)
f
i
PARTICLE DIAMETER (cm)
Dunite
10 mm 1 mm
less than non-
or to
1 mm crystalline
larger 10 mm
t
n
)
g
&
E
r
o
s
i
o
nScheme for Sedimentary Rock Identification
INORGANIC LAND-DERIVED SEDIMENTARY ROCKS
TEXTURE GRAIN SIZE COMPOSITION COMMENTS ROCK NAME MAP SYMBOL
Pebbles, cobbles, Rounded fragments Conglomerate
and/or boulders
embedded in sand, Mostly
Angular fragments Brecciasilt, and/or clay quartz,
feldspar, and
Clastic Sand clay minerals; Fine to coarse Sandstone(0.006 to 0.2 cm)(fragmental) may contain
. . . . .fragments ofSilt . . . .Very fine grain Siltstone(0.0004 to 0.006 cm) other rocks
and minerals
Compact; may splitClay Shale
(less than 0.0004 cm) easily
CHEMICALLY AND/OR ORGANICALLY FORMED SEDIMENTARY ROCKS
TEXTURE GRAIN SIZE COMPOSITION COMMENTS ROCK NAME MAP SYMBOL
Halite Rock salt
Fine Crystals from
to chemicalCrystalline Gypsum Rock gypsumcoarse precipitates
crystals and evaporites
Dolomite Dolostone
Precipitates of biologicCrystalline or
origin or cemented shellCalcite Limestone
bioclastic Microscopic to fragments
very coarse CompactedBioclastic Bituminous coalCarbon plant remains
Scheme for Metamorphic Rock Identification
GRAIN TYPE OF
TEXTURE COMPOSITION COMMENTS ROCK NAME MAP SYMBOLSIZE METAMORPHISM
Low-gradeFine Slate
metamorphism of shale
Regional
Foliation surfaces shiny(Heat and
from microscopic mica PhyllitepressureFine crystalsincreases)to
medium Platy mica crystals visible
from metamorphism of clay Schist
or feldspars
Medium High-grade metamorphism;
to mineral types segregated Gneiss
into bands coarse
Metamorphism ofFine Carbon Anthracite coalRegional bituminous coal
Various rocks changed byVarious Contact heat from nearby HornfelsFine minerals (heat) magma/lava
Metamorphism of
Quartz Quartzitequartz sandstone
Fine
to Regional
coarse Calcite and/or Metamorphism ofor Marbledolomite limestone or dolostone
contact
Various Pebbles may be distorted MetaconglomerateCoarse
minerals or stretched
Physical Setting/Earth Science Reference Tables — 2010 Edition 7
FOLIATED
NONFOLIATED BAND- MINERAL
ING ALIGNMENT
MICA
QUARTZ
FELDSPAR
AMPHIBOLE
GARNET
PYROXENEGEOLOGIC HISTORY
NY Rock
Record
Eon Era Period Epoch Life on Earth
Sediment
Million years ago Bedrock
Million years ago
HOLOCENE 00 0.01QUATERNARY PLEISTOCENE Humans, mastodonts, mammoths1.8
PLIOCENE
5.3 Large carnivorous mammalsNEOGENECENOZOIC MIOCENE Abundant grazing mammals
23.0
OLIGOCENE Earliest grasses
33.9
500 PALEOGENE EOCENE Many modern groups of mammals
55.8
PALEOCENE Mass extinction of dinosaurs, ammonoids, and L 65.5 many land plants
A
LATET MESOZOIC
E
CRETACEOUS1000
Earliest flowering plantsFirst M EARLY Diverse bony fishessexually I
reproducing
D 146organisms
LATED Earliest birds
MIDDLEL Abundant dinosaurs and ammonoidsJURASSIC
E
EARLY
200
Earliest mammalsE LATE
A TRIASSIC
Earliest dinosaurs
2000 R MIDDLEOceanic oxygen
L begins to enter EARLY Mass extinction of many land and marine 251
the atmosphere organisms (including trilobites)Y LATEPALEOZOIC
Mammal-like reptilesMIDDLE
PERMIAN
EARLY Abundant reptiles
L Oceanic oxygen 299A LATEproduced by PENNSYLVANIAN Extensive coal-forming forestsT cyanobacteria EARLY 318E combines with Abundant amphibiansLATE
iron, formingM Large and numerous scale trees and seed ferns MISSISSIPPIAN3000 iron oxide layers MIDDLEI (vascular plants); earliest reptileson ocean floorD EARLY
D 359
L Earliest amphibians and plant seedsLATEE Earliest stromatolites Extinction of many marine organisms
Oldest microfossils
Earth’s first forestsDEVONIAN MIDDLE
Earliest ammonoids and sharks
Abundant fishEARLYE
416A Evidence of biological Earliest insectsLATE
carbon Earliest land plants and animalsSILURIANR
EARLY Abundant eurypteridsL4000 444
LATEY
Oldest known rocks Invertebrates dominant
ORDOVICIAN MIDDLE Earth’s first coral reefs
EARLY
488
LATEEstimated time of origin4600
of Earth and solar system Burgess shale fauna (diverse soft-bodied organisms)
MIDDLE Earliest fishesCAMBRIAN
Extinction of many primitive marine organisms
EARLY Earliest trilobites
542 Great diversity of life-forms with shelly parts
Ediacaran fauna (first multicellular, soft-bodied 580
marine organisms)
Abundant stromatolites(Index fossils not drawn to scale) 1300
A B C D E F G H I J K L M N
Cryptolithus Valcouroceras Centroceras Eucalyptocrinus Tetragraptus Coelophysis Stylonurus
Hexameroceras Manticoceras Ctenocrinus Dicellograptus EurypterusElliptocephala Phacops
8 Physical Setting/Earth Science Reference Tables — 2010 Edition
PHANERO-
PREC AMBRIAN
ZOIC
ARCHEAN P R OTEROZOIC
CARBONIF-
EROUS OF NEW YORK STATE
Time Distribution of Fossils
Important Geologic Inferred Positions of(including important fossils of New York)
Events in New York Earth’s LandmassesThe center of each lettered circle indicates the approximate time of
existence of a specific index fossil (e.g. Fossil lived at the end A
of the Early Cambrian).
O S Advance and retreat of last continental ice
Sands and clays underlying Long Island and 59 million years ago
Staten Island deposited on margin of Atlantic
Ocean
Dome-like uplift of Adirondack region begins
Initial opening of Atlantic Ocean 119 million years ago
North America and Africa separate
Intrusion of Palisades sill
L Pangaea begins to break up
232 million years ago
Alleghenian orogeny caused by
collision of North America and
Africa along transform margin,
forming Pangaea
R
Catskill delta formsQ
Erosion of Acadian MountainsC F G N X Z Acadian orogeny caused by collision of
359 million years agoNorth America and Avalon and closing VI of remaining part of Iapetus Ocean
H PM Salt and gypsum deposited in evaporite basinsU YE
Erosion of Taconic Mountains; Queenston deltaK forms
Taconian orogeny caused by closing DB
of western part of Iapetus Ocean and T W collision between North America and
volcanic island arcJ
458 million years ago
Widespread deposition over most of New York
along edge of Iapetus OceanA
Rifting and initial opening of Iapetus Ocean
Erosion of Grenville Mountains
Grenville orogeny: metamorphism of
bedrock now exposed in the Adirondacks
and Hudson Highlands
O Q R S T U V W X Y ZP
Mastodont Cooksonia Naples Tree Condor Cystiphyllum Maclurites Eospirifer
Beluga Whale Bothriolepis Lichenaria Pleurodictyum Platyceras Mucrospirifer
Aneurophyton
ESC/BW/TN (2009)
Physical Setting/Earth Science Reference Tables — 2010 Edition 9
TRILOBITES
NAUTILOIDS
AMMONOIDS
CRINOIDS
GRAPTOLITES DINOSAURS
EURYPTERIDS
MAMMALS
VASCULAR PLANTS
PLACODERM FISH
BIRDS
CORALS
GASTROPODS
BRACHIOPODSInferred Properties of Earth’s Interior
3DENSITY (g/cm )
2.7 granitic continental crust
3.0 basaltic oceanic crust
MOHO
3.4–5.6
9.9–12.2
CASCADES
TRENCH
12.8–13.1
EARTH’S CENTER4
3
2
1
0
7000
6000
5000
4000
3000
2000
PARTIAL MELTING
1000
0
0 1000 2000 4000 60003000 5000
DEPTH (km)
10 Physical Setting/Earth Science Reference Tables — 2010 Edition
MID-ATLANTIC
RIDGE
N
A
E
CE
)
O
C
)
E
L
I
E
NT
L
A
L
L
R
AT
T
T
E
N
N
A
E
)
M
A
R
L
K
U
E
E
T
C
M
A
R
E
O
ER
E
TI
R
MP
H
S
OR TE
P
C
ERI
A
K
NT
S
O
O
L
C
I
P
C
I
MELTING POINT
H
(
C
I
T
E
I
N
N
L
R
A
}
E
R
&
C
RI
E
H
E
E
R
L
P
N
AM
T
S
T
&
N
O
O
H
N
RT
A
R
U
O
E
M
E
R
N
T
H
E
S
D
T
O
I
N
I
F
(
U
G
S
R
I
C
R
IF
A
N
O
T
S
R
MELTING POINT
N
I
(
N
I
C
FI
A
E
CI
A
C
P
O
TEMPERATURE (°C) PRESSURE
(million atmospheres)

Un pour Un
Permettre à tous d'accéder à la lecture
Pour chaque accès à la bibliothèque, YouScribe donne un accès à une personne dans le besoin