Mpri concurrency (cours 2 3) final exam, 2005 2006 22 feb 2006
3 pages
Français

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Mpri concurrency (cours 2 3) final exam, 2005 2006 22 feb 2006

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
3 pages
Français
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Sujets

Informations

Publié par
Nombre de lectures 103
Langue Français

Extrait

MPRI Concurrency (Cours 23) Final exam, 20052006 22 Feb 2006, 16.15–19.15 James.Leifer@inria.fr Question annotations:= easy;∗∗= medium;∗∗∗= hard 1. Considerthe termP=νy.(x(x).x(x).xy)|νy.(xy.νx.(yx.x(x))) withx6=y. (a)What is the set of free names ofP? Solution:{x}. (b)Define a processPthat isαequivalent toPand has all bound names distinct from each other and from all free names. Solution:P=νy1.(x(x1).x1(x2).x2 1)|νy2.(x2.νx3.(2x3.x3(x4))).
(c)What is the set of free names ofP? Solution:{x}, sinceαconversion doesn’t change the free names. (d)∗∗Show the sequence of three reduction steps (−→) starting atP, taking care to make explicit any scope extrusions you need (i.e. use of(strex)in). Solution: P νy1, y2.(x(x1).x1(x2).x2y1|xy2.νx3.(y2x3.x3(x4))) extrusionofy2 −→νy1, y2.(y2(x2).x2y1|νx3.(y2x3.x3(x4))) communicationonx νy1, y2, x3.(y2(x2).x2y1|y2x3.x3(x4)) extrusionofx3 −→νy1, y2, x3.(x3y1|x3(x4)) communicationony2 −→νy1, y2, x3.(0|0on) communicationx3
2. This question explores the relationship between name hiding and bisimulation in the coreπcalculus (i.e. the calculus on slide 3 with no extra features).
(a)∗∗∗Prove that strong bisimilarity is closed by new binding, i.e.PQimpliesνx.Pνx.Q. Youmay only use the basic definitions of bisimulation and labelled transition (no “up to” techniques). Hint: startwith a relationR={(νx.P,νx.Q)/ PQ}and try to show thatRis a strong bisimulation. Youmay have to add some more pairs toR. ′ ′ Solution:TakeR=R ∪(aim to show that). WeRTo dois a bisimulation. α ′ ′ RandP−→Pwit that we need to consider (P0, Q0)0 0hbn(α)fn(Q0) =. We distinguish two cases. α ′ ′ CasePQ:By definition of, there existsQsuc−→Q 0 00h thatQ0 0and ′ ′′ ′PQ, hence (QP ,)∈ R, as desired. 0 00 0 Case(P0, Q0)∈ R:Then there existsPandQsuch thatPQandP0=νx.P andQ0=νx.Qconsider the two possible ways that the labelled transition. We α Pould derived. P0−→0c havebeen α ′ ′′ ′ Case(labnew):Then there existsPsuch thatP−→PandP=νx.P 0 andx /bn(αhypothesis, we also have). Bybn(α)fn(Q0) =, hence bn(α)fn(Q) =, thus it is safe to apply the definition of bisimulation to α ′ ′′ ′ the hypothesisPQ; hence there existsQsuch thatQ−→QandPQ. α ′ ′′ ′′ ′ LetQ=νx.Qby. Then(labnew),Q0−→Q. Finally,(P ,Q)∈ R ⊆ R, 0 00 0 as desired.
1
  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents