Cet ouvrage fait partie de la bibliothèque YouScribe
Obtenez un accès à la bibliothèque pour le lire en ligne
En savoir plus

Stochastic dynamics of spiking neuron models

De
32 pages
Stochastic dynamics of spiking neuron models and implications for network dynamics Nicolas Brunel

  • stochastic dynamics

  • neuron models

  • neuron

  • independent input

  • input- output relationship

  • dependent

  • syn noise


Voir plus Voir moins

Stochasticdynamicsofspikingneuronmodels
andimplicationsfornetworkdynamics
Nicolas BrunelThequestion
• What is the input output relationship of single neurons?Thequestion
• What is the input output relationship of single neurons?
• Given a (time dependent) input, and a given statistics of the noise, what is the instantaneous firing rate of a
neuron?
I (t) = μ(t)+ Noise ⇒ ν(t)?synThequestion
• What is the input output relationship of single neurons?
• Given a (time dependent) input, and a given statistics of the noise, what is the instantaneous firing rate of a
neuron?
I (t) = μ(t)+ Noise ⇒ ν(t)?syn
• Simplest case: response to time independent input
μ(t) = μ ⇒ ν(t) = ν0 0Thequestion
• What is the input output relationship of single neurons?
• Given a (time dependent) input, and a given statistics of the noise, what is the instantaneous firing rate of a
neuron?
I (t) = μ(t)+ Noise ⇒ ν(t)?syn
• Simplest case: response to time independent input
μ(t) = μ ⇒ ν(t) = ν0 0
• Next step: response to time dependent inputs
Z t
2μ(t) = μ + μ (t) ⇒ ν(t) = ν + K(t−u)μ (u)du+O( )0 1 0 1
−∞Thequestion
• What is the input output relationship of single neurons?
• Given a (time dependent) input, and a given statistics of the noise, what is the instantaneous firing rate of a
neuron?
I (t) = μ(t)+ Noise ⇒ ν(t)?syn
• Simplest case: response to time independent input
μ(t) = μ ⇒ ν(t) = ν0 0
• Next step: response to time dependent inputs
Z t
2μ(t) = μ + μ (t) ⇒ ν(t) = ν + K(t−u)μ (u)du+O( )0 1 0 1
−∞
• Fourier transform: response to sinusoidal inputs
˜μ (ω) ⇒ ν (ω) = K(ω)μ (ω)1 1 1
Of particular interest: high frequency limit (tells us how fast a neuron instantaneous firing rate can react to
time dependent inputs)60A
40
20
0
-20
0 20 40 60
B
0 20 40 60
40
C
30
20
10
0
0 20 40 60
t (ms)
Firing rate (Hz) Spikes Noisy input current (mV)Howtocomputetheinstantaneousfiringrate
• Consider a LIF neuron with deterministic+ white noise inputs,
˙τ V =−V +μ(t)+σ(t)η(t)m
• P(V,t) is described by Fokker Planck equation
2 2∂P(V,t) σ (t) ∂ P(V,t) ∂
τ = + [(V −μ(t))P(V,t)]m 2∂t 2 ∂V ∂V
• Boundary conditions⇒ linksP and instantaneous firing probabilityν
– At thresholdV : absorbing b.c. + probability flux atV = firing probabilityν(t):t t
∂P 2ν(t)τm
P(V ,t) = 0, (V ,t) =−t t 2∂V σ (t)
– At reset potentialV : what comes out atV must come back atVr t r
∂P ∂P 2ν(t)τm− + − +P(V ,t) = P(V ,t), (V ,t)− (V ,t) =−r r r r 2∂V ∂V σ (t)Howtocomputetheinstantaneousfiringrate
• Consider a LIF neuron with deterministic+ white noise inputs,
˙τ V =−V +μ(t)+σ(t)η(t)m
• P(V,t) is described by Fokker Planck equation
2 2∂P(V,t) σ (t) ∂ P(V,t) ∂
τ = + [(V −μ(t))P(V,t)]m 2∂t 2 ∂V ∂V
• Boundary conditions⇒ linksP and instantaneous firing probabilityν
– At thresholdV : absorbing b.c. + probability flux atV = firing probabilityν(t):t t
∂P 2ν(t)τm
P(V ,t) = 0, (V ,t) =−t t 2∂V σ (t)
– At reset potentialV : what comes out atV must come back atVr t r
∂P ∂P 2ν(t)τm− + − +P(V ,t) = P(V ,t), (V ,t)− (V ,t) =−r r r r 2∂V ∂V σ (t)
⇒ Time independent solutionP (V),ν ;0 0
⇒ Linear responseP (ω,V),ν (ω).1 1LIFmodel
• ν (ω) can be computed analytically for all ω in the1
case of white noise; in low/high frequency limits in the
case of colored noise withτ τn m
• Resonances at
f = nν0
for high rates and low noise;
• Attenuation at highf
(
ν0√ (white noise)σ ωτmGain∼ p
ν τ0 s (colored noise)
σ τm
• Phase lag at highf
(
π
(white noise)4Lag∼
0 (colored noise)
Brunel and Hakim 1999; Brunel et al 2001; Lindner and Schimansky Geier 2001; Fourcaud and Brunel 2002