Cet ouvrage fait partie de la bibliothèque YouScribe
Obtenez un accès à la bibliothèque pour le lire en ligne
En savoir plus

Structure Preserving Signatures and Commitments

De
69 pages
Structure-Preserving Signatures and Commitments to Group Elements Masayuki Abe 1 Georg Fuchsbauer 2 Jens Groth 3 Kristiyan Haralambiev 4 Miyako Ohkubo 5 CRYPTO, 16.08.2010 1 Information Sharing Platform Laboratories, NTT Corporation, Japan 2 École Normale Supérieure, CNRS - INRIA, France 3 University College London, UK 4 Computer Science Department, New York University, USA 5 National Institute of Information and Communications Technology, Japan Abe,Fuchsbauer,Groth,Haralambiev,Ohkubo (): Sign and Commit to Group Elements CRYPTO'10 1 / 23

  • group elements

  • masayuki abe

  • homomorphic trapdoor

  • constant-size trapdoor

  • signature

  • communications technology

  • bilinear groups

  • ecole normale


Voir plus Voir moins

Structure-PreservingSignaturesand,rancekCommitmentsCommittoComputerGroupInstituteElementsralambievMasa/yukiCollegeAbNewe,1andGeouchsbauerrgubFntuchsbauerINRIA,2UniversitJensUKGrothDepa3oKristiyiversitan5HaInforalambievT4AbMiyhakooSignOhkubGroupoCRYPTO'105-CRYPTO,F16.08.201031yInfoLondon,r4mScienceationrtment,ShaYringrPlatfoUnrmyLabUSAoNationalratoofries,rmationNTTCommunicationsCoechnologyrJapanpe,Fo,Grotration,,HaJapa,Ohkubn()2o:?coleandNotormaleElemeSups?rieure,1CNRS23OurContributionsNewcomoeysROMmitmentdoandFirstsignatureAbschemesGroupinwithbilineablindrwithgroupspHomomohrphicSigntrapCRYPTO'10dororrecientcommitments(UCtogroupgjoinrecientoxyupuchsbauerelemenralambievtsubSignaturesCommitonntgroup/elements,oconsistingcommitmentsofsublineagroupkelementsFirst(round-optimalstructure-psignaturesreservingsecure))ecientStructure-psignaturesreservingconcurrentsignaturesw/osigningFirsttheiranonymousorownsignaturespublice,Fk,Groteys,Ha(,Ohkubautomo()rphico:)andSimulatabletosignaturesElemeApplicationssConstant-size2trap23OurContributionsNewcomoeysROMmitmentdoandFirstsignatureAbschemesGroupinwithbilineablindrwithgroupspHomomohrphicSigntrapCRYPTO'10dororrecientcommitments(UCtogroupgjoinrecientoxyupuchsbauerelemenralambievtsubSignaturesCommitonntgroup/elements,oconsistingcommitmentsofsublineagroupkelementsFirst(round-optimalstructure-psignaturesreservingsecure))ecientStructure-psignaturesreservingconcurrentsignaturesw/osigningFirsttheiranonymousorownsignaturespublice,Fk,Groteys,Ha(,Ohkubautomo()rphico:)andSimulatabletosignaturesElemeApplicationssConstant-size2trap23OutlineofthetalkAboGroup1hCommitmentsSign2CRYPTO'10AutomouchsbauerrphicralambievSignaturesub3CommitSignatureston/Ve,Fecto,Grotrs,Haof,OhkubGroup()Eo:lementsand4toApplicationsElemenofsOur3Signatures231Commitments2AutomohSignCRYPTO'10rphicoSignaturesGroup3uchsbauerSignaturesralambievonubVCommitectotrs/of,GrotGroup,HaE,Ohkublements()4o:ApplicationsandoftoOurElemenSignaturessAb4e,F23CommitmentsAcommitmentisAbenedschemerconsistsGroupofpsetupofarenodcanalgohomomorithmtComtheComatakmessageesaahmessageSignandCRYPTO'10randomnesseandanyoutputsphic:aductcoocommitmentmmirotmentmessagesMessageisandthanrandomnessmessagesasrercalleduchsbaueropralambieveningub.CommitOurntscheme/isbhiding:opatocommitmentmessagerevealsrnothingtheabrooutofthewmessagecommitmentsbinding:ahatordptoductndthealength-reducing:commitmentcommitmentandshotterwtheoTheopaeningselementwithofdierentbilineamessagesgrouptrape,Fdo,Groto,Har:,Ohkubgiven()ao:trapanddotooElemer,sa5commitment23CommitmentsAcommitmentisAbenedschemerconsistsGroupofpsetupofarenodcanalgohomomorithmtComtheComatakmessageesaahmessageSignandCRYPTO'10randomnesseandanyoutputsphic:aductcoocommitmentmmirotmentmessagesMessageisandthanrandomnessmessagesasrercalleduchsbaueropralambieveningub.CommitOurntscheme/isbhiding:opatocommitmentmessagerevealsrnothingtheabrooutofthewmessagecommitmentsbinding:ahatordptoductndthealength-reducing:commitmentcommitmentandshotterwtheoTheopaeningselementwithofdierentbilineamessagesgrouptrape,Fdo,Groto,Har:,Ohkubgiven()ao:trapanddotooElemer,sa5commitment23CommitmentsAcommitmentisAbenedschemerconsistsGroupofpsetupofarenodcanalgohomomorithmtComtheComatakmessageesaahmessageSignandCRYPTO'10randomnesseandanyoutputsphic:aductcoocommitmentmmirotmentmessagesMessageisandthanrandomnessmessagesasrercalleduchsbaueropralambieveningub.CommitOurntscheme/isbhiding:opatocommitmentmessagerevealsrnothingtheabrooutofthewmessagecommitmentsbinding:ahatordptoductndthealength-reducing:commitmentcommitmentandshotterwtheoTheopaeningselementwithofdierentbilineamessagesgrouptrape,Fdo,Groto,Har:,Ohkubgiven()ao:trapanddotooElemer,sa5commitment23; 2G ; 2G
( ; ) ( ; ) =
G
( ;G ;G ;G ; ; ; )
G ;G ;G
:G G !G
8 2G ;8 2G ;8 ; 2Z ( ; ) = ( ; )
G =h i G =h i G =h ( ; )i
orime2TprpuchsbauerofhaaBilineagroups1bGivencyclicupTnon-trivial:eeDP2LemmaXpairingant1GYTbitwithtoHoe2GGXAssumptioneTYGroupsTinabthe2Ab1Group1onCRYPTO'10random/RYG,:rder12isprd1ndHReT,g1satisfyingTrXR2ReeieGGther,andH1bilineaDDHhrralambievimpliesodoubleubassumptionSigne,FCommit,GrotT,HaDouble,OhkubP()airingo:AssandumtoptElemeisBilinea6G23G
( ;G ;G ;G ; ; ; )
G ;G ;G
:G G !G
8 2G ;8 2G ;8 ; 2Z ( ; ) = ( ; )
G =h i G =h i G =h ( ; )i
; 2G ; 2G
( ; ) ( ; ) =
T22pairingGX1Commitphaar,:ralambievbGivenupHonon-trivial:eeTruchsbauerXubaigGYTbitrtoBilineawithe2AssumptionGXbilineaDPTYAbthehaboandSign1ptGroupsonCRYPTO'10random/RTG,1212iscyclicrdgroupsndHR1T,1esatisfyingTieYRLemmaRine1Gtheof2Tp1eDDHerpimpliesGdoublerderassumptionHe,Fo,GrotGroup,Hant,OhkubP()airingo:AssandumtorimeElemeDoublesBilinea6G23

Un pour Un
Permettre à tous d'accéder à la lecture
Pour chaque accès à la bibliothèque, YouScribe donne un accès à une personne dans le besoin