CRITICAL EXPONENTS AND RIGIDITY IN NEGATIVE
20 pages

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

CRITICAL EXPONENTS AND RIGIDITY IN NEGATIVE

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
20 pages
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

CRITICAL EXPONENTS AND RIGIDITY IN NEGATIVE CURVATURE GILLES COURTOIS 1. Introduction The goal of this lecture is to describe a theorem of M.Bonk and B.Kleiner on the rigidity of discrete groups acting on CAT(-1)-spaces whose limit set's Hausdor and topological dimension coincide. We will give the proof of M.Bonk and B.Kleiner and also an alternative proof in particular cases. Before going into it we rst set up some historical background. A famous theorem of G.D.Mostow states that a compact hyperbolic manifold of dimension n 3 is determined up to isometry by its fundamental group. In other words, if is a cocompact lattice in PO(n; 1), with n 3, there is a unique faithfull and discrete representation : ! PO(n; 1) up to conjugacy. On the other hand, for some lattices of PO(n; 1) there exist many faithfull discrete nonconjugate representations : ! PO(m; 1) 2 n < m as described in the following example. Bendings: Let us assume that a lattice in PO(n; 1) is a free product A C B of its subgroups A and B over the amalgamated subgroup C such that C cocompactly preserves a totally geodesic copy of the hyperbolic space H n1 in H n .

  • any convex cocompact

  • dimensional compact

  • convex cocompact

  • faithfull discrete

  • dimensionel sphere

  • hadamard manifolds

  • discrete nonconjugate

  • hausdor dimension

  • hyperbolic space

  • unique faithfull


Sujets

Informations

Publié par
Nombre de lectures 23

Extrait

)CRITICALlargerEXPONENTSBAND:RIGIDITYyINaNEGA1)TIVECCURtoVrAcopTUREmGILLES(COURATOISC1.olicIntrtheoductionusThe(goalinofthethistolecturecoisoftofordescribeobtainedadtheoremrepresenof1M.Bonkcopand+1B.Kleiner(oninthe=rigiditOyforoftdiscreteCgroups)athatcpreservt+1iangucon1)CAset.T(-1)-spacesfucwhosetlimitrepresenset'sfucHausdorPandntopy:ologicalAdimensionOcoincide.hWofeOwillgroupgivaehthe1prooftralizedof;M.BonkaroundandwhicB.KleinerFandSalsotan1alternativaeAprorof2inwithparticularnocases.BeforeCgobing=in()tototallyitnwcannotecf.rstbsetanduptionsomePhistoricalObactokground.ofA()famoustationtheoremofof=:G.D.Mostoucw.states1),thatrepresenaofcompact(hmypberbwolic0manifold!of0dimension2nm;or3fucisdeterminedAupintonisometry1)b0ypreservitsgeofundamenoftalpgroup.HInHotherThew(ords,thenifPis+abcoofcompactnlatticeninisP1Or(itn;,1),newith!nn1)3,tthere=isaaunique)faithfulltandalldiscrete.represencommtation0there:biguit!denitionP(Oc(An;It1)shoupttosmallconjugacy.esOnanthedeotherofhand,Hforthsomeelattices0ofOnePofOw(ucn;non1)representhereofexistlatticeman(ytofaithfullm;discretennonconjugatetheirrepresenthetationslimit=::a!nPisOthe(limitm;G1)02ysian<Omn;asadescribhsianedtationin0theinfolloOwingm;example.withBendings:>Letcanuseassumethisthataalattice:in2PO0(In;1)Pis(a1)freeFprosucductaAhsiantationC0B=ofitsBsubgroupsPA(and+B;othever(the)amalgamatedessubgrouptotallyCdesicsucyhthethatyCerbcospacecompactlynpreservinesna.totgroupally0geoCdesiciscopcenyinofOthenh1yp1)erbyolicsubgroupspacerotationsHHn11Hin+1Hhnisomorphic.SF.ororsucthea2group1theletquotiendetmanifold:MP=(H+n;=bisa(compact)haypallerb2olicandmanifotldbwith=a1totallybrgeofordesicbemBbAseddtedutesandseparating(h)ypisersurfaceamNy=theHofnt1c=Cfor.2One=can\consider.acanFeucwnhsianforrepresen6tation0enough,0group:0!doPnotOe(yngeo+sic1y;H1).inAnrepresenandtationusbofconjugatealattice,of[11].PwOy(distinguishingn;et1)eeninFPhsianOa(Fm;hsian1)ta-with2acompactnof<Omn;isincalledPfuc(hsian1),if>is()comparepreservlimitesBasicallyasizetotallythegeosetdesicGcopyforofnonthehsiahrepresenyperbstriclyothanlicsizespacetheHsenofin0Hm().anLetFbhenatationlattice0of1PF2satisesGILcLEalSbCOUR)TOISwingBeforecgoinginfurther,;letectusEturnMtoifa=moreeacgentheerainlThesettingtheands,inthetroeduceEsomelimnotations.Let(Xb.etheatheCAaT(-1)-space,Xcf.o[4].bExamples(ofgeoCAT(-1)-spaceXaretCartgivan(HadamardsetmanifoldmetricofAnegativ=eumcurvhature's,KA(1,1ie.(i)simplyconnected>manifolds))ofadiusnegativ.earesectionalarecurvtatureGKG1-dimensional1.T(-Fdeneorasaxeddiscretegoroupdenoteof0isometryeenGandofdaeCaAdistanceT(-1)-spacetheXw,basewequivedenotedeneHausdorthedlimitLetsetH((Gfollo)ofGjasgtheonclosuresubsetofAtheor(bHitsaofsome0(and(henceaney)metricp)oinhlforstaoC2BXinrtheMidealcompactnessbGoundaryt@endingsXtofvXcompact,enough,namelyset()Gsuc)is=ologicalGo[15],Xa[)@letXdistance\b@ws.Xe.oinA.subsetYtoinXXisysaid;quasi-conthevtexandifjoiningthere0iswingaconstan)t(C)>on0TsucendshhoicethatpevbuterydierengeoofdesicoinsegmenrisettwithWendpyoin)tswithintheYtheliesGinrecallthe-HausdorCon-neighcb;orhodenedoFdMof0,YH.AThefgdiamroup)Gtheistaksaidsequencesquasi-congvMexvcowhosecompactjifallthereHexist)a!G-inWvthaarianHausdortHquasi-con)vdexHsubset)YdTheXwillwithDe

  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents