Double loop spaces braided monoidal categories and algebraic type of space
21 pages
English

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris

Double loop spaces braided monoidal categories and algebraic type of space

-

Découvre YouScribe en t'inscrivant gratuitement

Je m'inscris
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus
21 pages
English
Obtenez un accès à la bibliothèque pour le consulter en ligne
En savoir plus

Description

Double loop spaces, braided monoidal categories and algebraic 3-type of space Clemens Berger 15 march 1997 Abstract We show that the nerve of a braided monoidal category carries a nat- ural action of a simplicial E2-operad and is thus up to group completion a double loop space. Shifting up dimension twice associates to each braided monoidal category a 1-reduced lax 3-category whose nerve realizes an ex- plicit double delooping whenever all cells are invertible. We deduce that lax 3-groupoids are algebraic models for homotopy 3-types. Introduction The concept of braiding as a refinement of symmetry is the starting point of a rich interplay between geometry (knot theory) and algebra (representation theory). The underlying structure of a braided monoidal category reveals an interest of its own in that it encompasses two at first sight different geometrical objects : double loop spaces and homotopy 3-types. The link to double loop spaces was pointed out by J. Stasheff [38] and made precise by Z. Fiedorowicz [15], who proves that double loop spaces may be characterized (up to group completion) as algebras over a contractible free braided operad. The link to homotopy 3-types goes back to A. Grothendieck's pursuit of stacks [20] and was taken up by O. Leroy [29], who shows that a weak form of 3-groupoid, we call here lax 3-groupoid, models homotopy 3-types; the laxness stems precisely from “relaxing” a strict commutativity constraint to an interchange (i.

  • braided monoidal

  • e2-operad

  • sk ?

  • pure braid

  • group completion

  • cellular e2-preoperad

  • thus

  • sk induced


Sujets

Informations

Publié par
Nombre de lectures 15
Langue English

Extrait

Doubleloopspaces,braidedmonoidalcategoriesandalgebraic3-typeofspaceClemensBerger15march1997AbstractWeshowthatthenerveofabraidedmonoidalcategorycarriesanat-uralactionofasimplicialE2-operadandisthusuptogroupcompletionadoubleloopspace.Shiftingupdimensiontwiceassociatestoeachbraidedmonoidalcategorya1-reducedlax3-categorywhosenerverealizesanex-plicitdoubledeloopingwheneverallcellsareinvertible.Wededucethatlax3-groupoidsarealgebraicmodelsforhomotopy3-types.IntroductionTheconceptofbraidingasarefinementofsymmetryisthestartingpointofarichinterplaybetweengeometry(knottheory)andalgebra(representationtheory).Theunderlyingstructureofabraidedmonoidalcategoryrevealsaninterestofitsowninthatitencompassestwoatfirstsightdifferentgeometricalobjects:doubleloopspacesandhomotopy3-types.ThelinktodoubleloopspaceswaspointedoutbyJ.Stasheff[38]andmadeprecisebyZ.Fiedorowicz[15],whoprovesthatdoubleloopspacesmaybecharacterized(uptogroupcompletion)asalgebrasoveracontractiblefreebraidedoperad.Thelinktohomotopy3-typesgoesbacktoA.Grothendieck’spursuitofstacks[20]andwastakenupbyO.Leroy[29],whoshowsthataweakformof3-groupoid,wecallherelax3-groupoid,modelshomotopy3-types;thelaxnessstemspreciselyfrom“relaxing”astrictcommutativityconstrainttoaninterchange(i.e.braiding)cell.Lax3-groupoidsarecalledsemi-strict3-groupoidsbyBaez-Neuchl[2],andGraygroupoidsbyGordon-Power-Street[17].Ourmainconcernhereisto“tietogether”thesetwoaspectsofthesamestructure.Inparticular,wehopethismighthelptoconstructageneralschemerelatingiteratedloopspacestohomotopyn-types.Thepointisthatthecom-binatorialstructureofiteratedloopspacesisbynowquitewellunderstood(cf.[8],[3]),whereasthesameisnottrueforhomotopyn-typeswhenn4.Thetextisdividedintothreeparts:PartOneprovestheexistenceofadoubledeloopingforbraidedmonoidalcategoriesinthe“realm”ofsimplicialE2-operads.Insomeprecisesense,the1
braidgroupsarecontainedinthecombinatorialstructureofthesymmetricgroupsbymeansoftheweakBruhatorder.PartTwofullyembedsthecategoryofbraidedmonoidalcategoriesintothecategoryoflax3-categoriesthusprovidinganexplicitdoubledeloopingforbraidedmonoidalgroupoids.Themaintoolisacosimpliciallax3-categoricalobject.PartThreeprovestheequivalenceofthehomotopycategoriesofsimplicial3-typesandlax3-groupoidsonthebasisofthefollowingobservation:thefun-damentalgroupoidofthedoubleloopsonasimplyconnected3-typeisbraidedmonoidal.IwouldliketotaketheopportunitytothankthemembersofSydney’sCat-egorySeminarfortheirhospitalityduringmyvisitofthesouthernhemisphere.Thefollowingtextowesquitealottoallofthem.1BraidedmonoidalcategoriesThroughout,weshalladoptthefollowingconventionsandnotations:‘Monoidal’alwaysmeans‘strictmonoidal’.–Abraidingisnotassumedtobeinvertible.–Theclassofn-cellsofa(multiple)categoryCiswrittenCn.–ThesymmetricgrouponasetIisdenotedbySI.ForS{1,...,n}wewriteSnandthepermutationwhichmaps(1,...,n)to(a1,...,an)isrepresentedby[a1,...,an].Definition1.1.Abraidedmonoidalcategoryisamonoidalcategory(C,,U)endowedwithabinaturalfamilyofmorphismscA,B:ABBA,calledbraidings,suchthatforallA,B,C∈C0wehavei)cA,U=cU,A=1A(unitarity),ii)cAB,C=(cA,C1B)(1AcB,C)cA,BC=(1BcA,C)(cA,B1C)(transitivity).NaturalityandtransitivityofthebraidingsimplythecommutativityofthesocalledYang-Baxterhexagon:cA,C1BACBCAB1AcB,C1CcA,BABCCBAcA,B1CcB,C1A1BcA,CBACBCAThepurposeofthischapterisanewproofofthefollowingtheorem:2
  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents