Deep Sea Research II
23 pages
English
Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres
23 pages
English
Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres

Description

Niveau: Supérieur, Licence, Bac+1
Deep-Sea Research II 49 (2002) 3327–3349 Resource limitation of phytoplankton growth in the Crozet Basin, Subantarctic Southern Ocean P.N. Sedwicka,*, S. Blainb, B. Qu!eguinerc, F.B. Griffithsa,d, M. Fialae, E. Bucciarellib, M. Denisc aAntarctic CRC, GPO Box 252-80, Hobart, Tasmania 7001, Australia b Institut Universitaire Europ!een de la Mer, UMR-CNRS 6539, Place Nicolas Copernic, 29280 Plouzan!e, France cCentre d'Oceanologie de Marseille, Laboratoire d'Oc!eanographie et de Biog!eochimie, Campus de Luminy, Case 901, 13288 Marseille Cedex 09, France dCSIRO Division of Marine Research, Castray Esplanade, Hobart, Tasmania 7000, Australia eLaboratoire Arago, Universit!e Pierre et Marie Curie, UMR-CNRS 7621, 66651 Banyuls-sur-mer Cedex, France Accepted 20 July 2001 Abstract In January–February 1999, we performed shipboard iron- and macronutrient-addition experiments in the Crozet Basin, Indian sector of the Subantarctic Southern Ocean, to evaluate the sufficiency of ambient iron and macronutrient concentrations for algal growth. Experiments were conducted with near-surface seawater collected from three locations in a narrow latitudinal band characterized by relatively low algal biomass (o0.7 mg l1 chlorophyll a), low dissolved iron concentrations (o0.

  • late summer

  • seawater inside

  • using seawater

  • iron

  • zone

  • ocean

  • subantarctic southern

  • macronutrient-addition bottle

  • crozet basin during


Sujets

Informations

Publié par
Nombre de lectures 11
Langue English

Extrait

Deep-SeaResearchII49(2002)3327–3349ResourcelimitationofphytoplanktongrowthintheCrozetBasin,SubantarcticSouthernOceana,bca,deP.N.Sedwick*,S.Blain,B.Que!guiner,F.B.Grifths,M.Fiala,cbE.Bucciarelli,M.DenisaAntarcticCRC,GPOBox252-80,Hobart,Tasmania7001,AustraliabInstitutUniversitaireEurope!endelaMer,UMR-CNRS6539,PlaceNicolasCopernic,29280Plouzane!,FrancecCentred’OceanologiedeMarseille,Laboratoired’Oce!anographieetdeBioge!ochimie,CampusdeLuminy,Case901,13288MarseilleCedex09,FrancedCSIRODivisionofMarineResearch,CastrayEsplanade,Hobart,Tasmania7000,AustraliaeLaboratoireArago,Universite!PierreetMarieCurie,UMR-CNRS7621,66651Banyuls-sur-merCedex,FranceAccepted20July2001AbstractInJanuary–February1999,weperformedshipboardiron-andmacronutrient-additionexperimentsintheCrozetBasin,IndiansectoroftheSubantarcticSouthernOcean,toevaluatethesufficiencyofambientironandmacronutrientconcentrationsforalgalgrowth.Experimentswereconductedwithnear-surfaceseawatercollectedfromthreelocationsinanarrowlatitudinalbandcharacterizedbyrelativelylowalgalbiomass(o0.7mgl1chlorophylla),lowdissolvedironconcentrations(o0.33nM),andstrongmeridionalgradientsintemperature,salinityandmacronutrientconcentrations:(1)thePolarFrontalZone(PFZ)near461S,651E(B19mMnitrateand1.2mMsilicicacid);(2)theconfluenceoftheSubantarcticandSubtropicalFronts(SAF/STF)near441120S,631230E(B5.4mMnitrateand0.5mMsilicicacid);and(3)thesouthernSubtropicalZone(STZ)near431180S,621310E(o0.1mMnitrateandB1.4mMsilicicacid).Ourexperimentalresultsrevealthreedistinctregimesofresourcelimitationofphytoplanktongrowth.InthePFZ,ironavailabilityexertedtheprimarylimitationonnitratedrawdownandbiomassaccumulation,thuscommunitygrowth,withsilicicacidavailabilityexertingasecondarylimitationondiatomgrowthandbiogenicsilicaproduction.WithintheSAF/STF,irondeficiencywasalsotheprimarylimitationonalgalcommunitygrowth;however,hereweobservedevidenceofsecondarylimitationofnitratedrawdownandbiomassaccumulationbysilicicaciddeficiency,viacontrolofalgalcommunitystructure—suchthatironadditionpreferentiallystimulatedthegrowthofnon-diatomnanoplankton—suggestingthatthealgalcommunitywaspoisedclosetoco-limitationbyironandsilicicacid.Asexpected,ourexperimentalresultsindicatethatmacronutrients(nitrate/phosphate)weretheprimarylimitationoncommunitygrowthintheSTZwaters;however,ourresultsalsosuggestthatirondeficiencyimposedasignificantsecondarylimitationoncommunitygrowth,particularlydiatomgrowth,suchthatthealgalcommunitywaspoisedclosetoco-limitationbymacronutrientsandiron.Weconcludethatthesesameregimesofresourcelimitationarelikelytoregulatephytoplanktongrowthandexportproductionovermuchoftheopen-oceanSubantarcticregionduringthemidtolatesummer.r2002ElsevierScienceLtd.Allrightsreserved.*Correspondingauthor.Presentaddress:BermudaBiologicalStationforResearch,St.George’sGE01,Bermuda.E-mailaddress:psedwick@bbsr.edu(P.N.Sedwick).0967-0645/02/$-seefrontmatterr2002ElsevierScienceLtd.Allrightsreserved.PII:S0967-0645(02)00086-3
2338P.N.Sedwicketal./Deep-SeaResearchII49(2002)3327–33491.IntroductionTheSubantarcticregionofSouthernOcean,locatedbetweenthePolarandSubtropicalwatermasses,accountsforasignificantfractionofmarineprimaryproduction(Fieldetal.,1998),andisoneofthelargestoceanicsinksforatmosphericCO2,dueinparttobiologicaluptakeandexportbyphytoplankton(Metzletal.,1999).Fromsouthtonorth,thesurfacewaterswithinthisvastcircumpolarbeltincludetheAntarcticPolarFront,thePolarFrontalZone,theSubantarcticFront,theSubantarcticZone,andtheSubtropicalConvergenceand/orSubtropicalFront(NowlinandKlinck,1986;ParkandGambe!roni,1997;Griffithsetal.,1999;RintoulandTrull,2001).Muchofthisregionischaracterizedbyhigh-nutrientlow-chlorophyll(HNLC)conditions—where‘‘nutrient’’referstonitrateandphos-phatealthoughlownitrateconcentrations(o1mM)areoftenobservedinsurfacewatersoftheSubtropicalConvergence/SubtropicalFront(Clementsonetal.,1998;Boydetal.,1999;Griffithsetal.,1999).Silicicacid,whichisrequiredforthegrowthofdiatoms,iscommonlydepletedfromlevelsofB5mMormoreinspringtoverylowconcentrations(o1mM)bymidtolatesummer(Dugdaleetal.,1995;Nelsonetal.,2001;RintoulandTrull,2001),anddissolvedironconcentrationsarelikelytobelow(o0.5nM)insurfacewatersovermuchoftheregion(Sedwicketal.,1997,1999;Coaleetal.,1999;MeasuresandVink,2001).Thus,themajorcontrolsonalgalgrowthinopen-oceanwatersofthisregionmayincludeironandsilicicacidavailability,inaddi-tiontolightavailabilityascontrolledbyverticalmixing,and,inthenorth,nitrateand/orphos-phateavailability(Martinetal.,1990a;NelsonandSmith,1991;Cullen,1991;Dugdaleetal.,1995;Banse;1996,Sedwicketal.,1997;SundaandHuntsman,1997;Boydetal.,1999;Griffithsetal.,1999;Hutchinsetal.,2001).Atpresent,however,welackaclearunderstandingoftherelativeimportanceofthesefactorsinregulatingalgalgrowth,communitystructureandexportproduc-tionintheSubantarcticSouthernOcean.Numerousstudiesduringthepastdecadehavecombinedtheresultsofwater-columnmeasure-ments,shipboardincubationexperimentsand,morerecently,mesoscaleperturbationexperi-ments,toinferthedominantcontrolsonalgalgrowthintheSouthernOcean(e.g.,Martinetal.,1990a;deBaaretal.,1990,1995;Lo.scheretal.,1997;vanLeeuweetal.,1997;SedwickandDiTullio,1997;Takeda,1998;Boydetal.,2000;Smetacek,2001).However,onlyafewsuchstudieshavebeenperformedintheSubantarcticregion,northoftheAntarcticPolarFront.FieldstudiesconductedinthePolarFrontalZonenear1701W,southeastofNewZealand,indicatethatphyto-planktoncommunitygrowthandbiomassarelimitedbylowironconcentrationsovermuchofthegrowingseason(Coaleetal.,1999;MeasuresandVink,2001),andthatlowsilicicacidconcentrations(o5mM)maylimitthegrowthofdiatoms,atleastduringthesummerandautumn(Francketal.,2000;Nelsonetal.,2001).Inaddition,experimentsperformedinthePolarFrontalZonearound1401E,southwestofTasma-nia,suggestthatlightavailabilitymaylimitalgalcommunitygrowthduringlatesummerandautumn(Boydetal.,2001).Furthernorth,inwatersoftheSubantarcticZonesoutheastofNewZealand,fielddatasuggestthatdiatomgrowthislimitedbyavailabilityofbothironandlightduringspring,andbyironand/orsilicicacidavailabilityduringsummer,whereaswatersinandnorthoftheSubtropicalConvergenceareironreplete(Boydetal.,1999).Similarly,theresultsoffieldexperimentsconductedtothewestofTasmaniaindicatethatalgalgrowthinSubantarc-ticZonewatersislimitedbyironandsilicicaciddeficiencyduringlatesummerandautumn,althoughtheseexperimentsalsoprovidedevidenceofironlimitationwithintheSubtropicalConver-gence(Sedwicketal.,1999;Hutchinsetal.,2001).Ageneralhypothesisthatisconsistentwiththeresultsofthesestudiesisthatphytoplanktoncommunitygrowthinopen-oceanwatersoftheSubantarcticregionisprimarilyregulatedbythreeresources—iron,silicicacid,andlight—theavail-abilityofwhichvaryseasonally.Growthlimita-tionduetoinsufficientlightislikelytobemostimportantbetweenlateautumnandearlyspring,whenthesurfacemixed-layerdepthtypicallyexceeds100–200m(RintoulandTrull,2001).
P.N.Sedwicketal./Deep-SeaResearchII49(2002)3327–3349Althoughsurface-waterdissolvedironconcentra-tionsmaybehighestoverthisperiod(MeasuresandVink,2001),thelowirradiancealsomayservetoprecipitateorintensifygrowthlimitationbyirondeficiency,giventheantagonisticrelationshipbetweentheironandlightrequirementsofphytoplankton(Raven,1990;SundaandHunts-man,1997),sothatalgalgrowthmaybephysio-logicallyco-limitedbyironandlight(Boydetal.,1999;Maldonaldoetal.,1999).Asthegrowingseasonprogresses,averagemixed-layerdepthdecreases,andalgalbiomassincreases,thecon-centrationsofbothironandsilicicacidaredepletedtoverylowvalues,whicharelikelytolimitthegrowthrateoflargerspecies,particularlydiatoms.Atthistime,betweenlatespringandearlyautumn,eitherironorsilicicacidmayexerttheproximatecontrolonalgalcommunitygrowth,andthephytoplanktoncommunitymaybepoisedclosetoco-limitationbytheseresources;infact,theavailabilityofbothresourcesmightsimulta-2339neouslylimitthegrowthofdifferentmembersofthealgalcommunity(Boydetal.,1999;Hutchinsetal.,2001).However,itisimportanttoappreciatethattheabovehypothesisisbasedondatacollectedduringarelativelysmallnumberoffieldstudiescarriedoutinonlytwonarrowsectorsoftheSouthernOcean.Insummer1999,wewereprovidedwiththeopportunitytoexaminetheroleofresourceavailabilityinregulatingphytoplanktongrowthintheIndiansectoroftheSubantarcticSouthernOcean,duringaresearchcruiseintheCrozetBasin,northwestofKerguelenIsland(Fig.1).ThisoceanographicsettingisquitedifferentfromtheSubantarcticregionnearNewZealandandTas-mania,inthattheSubantarcticandSubtropicalFrontsconverge,constrainedbytheKerguelenPlateauinthesouthandtheAgulhasReturnCurrentFront(AgulhasFront)inthenorth(Parketal.,1993;ParkandGambe!roni,1997).Thetransitionfromcold,fresh,nutrient-richpolarFig.1.Antares-IVcruisetrackshowinglocationofCrozetBasin(basemapcourtesyofB.Delille).Inset:DetailofcruisetrackinCrozetBasin,showingapproximatepositionsofmajoroceanographicfeatures(Y.-H.Park,pers.comm.,1999)andStations10(PFZ),7(SAF/STF)and8(STZ).
0333P.N.Sedwicketal./Deep-SeaResearchII49(2002)3327–3349waterstowarm,salty,nutrient-poorsubtropicalwatersoccursoveranarrowlatitudinalrange(Fig.1),inaregionthatappearstobecharacter-izedbyrelativelylowdissolvedironconcentrations(o0.4nM)andlowalgalbiomass(o0.7mgl1chlorophylla)duringthesummer.Herewereporttheresultsfromaseriesofshipboardbioassayexperiments,whichwereundertakentoinvestigatethesufficiencyofambientiron,silicicacid,andmacronutrientconcentrationsforphytoplanktongrowthinthreedistinctlow-iron,low-chlorophyllregimes;namely,(1)thePolarFrontalZone(PFZ),withhighconcentrationsofnitrate(B19mM)andlowconcentrationsofsilicicacid(B1.2mM);(2)theconfluenceoftheSubantarcticandSubtropicalFronts(SAFandSTF),withmoderateconcentra-tionsofnitrate(B5.4mM)andverylowconcen-trationsofsilicicacid(B0.5mM);and(3)thesouthernedgeoftheSubtropicalZone(STZ),withverylowconcentrationsofnitrate(o0.1mM)andlowconcentrationsofsilicicacid(B1.4mM).Ourexperimentalresultsdemonstratethreedistinctregimesofresourcelimitationwhichmayregulatealgalcommunityproductionandspeciescomposi-tioninwatersoftheSubantarcticregionduringthemidtolatesummer.2.MethodsTheAntares-IVcampaignwasconductedaboardNOMarionDufresneintheCrozetBasinduringJanuaryandFebruary1999,aspartoftheFrance-JGOFSprogram.AmajoraimofthisexpeditionwasanunderstandingofthefactorscontrollingphytoplanktonproductionandorganicmatterexportinthissectoroftheSubantarcticSouthernOcean,aregionthatistypicallychar-acterizedbyrelativelylowalgalbiomass,exceptforareasimmediately‘‘downstream’’fromtheislandplatformsofCrozetandKerguelen(Mooreetal.,1999).Ourstudyfocussedonanareanorthwest(upstream)ofKerguelenIsland,boundedbylatitudes43–461Sandlongitudes61–651E,wheretheconfluenceoftheSubantarcticandSubtropicalFrontswasalignedinasouthwesttonortheastdirection(Fig.1).TheapproximatepositionsoftheSAFandSTF(Fig.1)aredefinedbyaxialtemperaturesandsalinitiesof61Cand34.3(SAF),and101Cand34.8(STF),atawaterdepthof200m(Parketal.,1993;Park,pers.comm.,1999).OurcruiseincludedhydrographicandbiogeochemicalmeasurementsatstationswithinthePFZ,theSAF/STFconfluence,andthesouthernedgeoftheSTZ.Wemeasureddissolvedironinthewatercolumnandperformediron-andmacronutrient-additionbottle-incuba-tionexperimentsusingseawaterandresidentplanktoncollectedfromtheuppermixedlayeratStations10,7and8(Fig.1,Table1),whicharehereafterreferredtoasthePFZstation,theSAF/STFstation,andtheSTZstation,respectively.Containersandapparatususedforsamplingandanalysisofironinseawaterandforiron-andmacronutrient-additionincubationexperimentswererigorouslycleanedusingthetrace-metalcleantechniquesdescribedbySedwicketal.(1997,2000).Water-columnsamplesforironmeasurementswerecollectedincustom-builtpolycarbonatewatersamplerssuspendedfromanon-metallicline,asdescribedbySedwicketal.(1997).Uponrecovery,thewatersamplerswereimmediatelytransferredintoadedicatedcleanlaboratoryvan,wherefilteredandunfilteredsubsamplesweretakenunderClass-100filteredair(Sedwicketal.,1997).Subsampleswerefilteredthroughacid-cleanedPoreticspolycarbonatemembranes(0.4mm),usinganin-linesystempressurizedwith0.2mm-filteredhigh-puritynitro-gengas.Thefilteredandunfilteredsubsampleswerecollectedinacid-cleanedNalgenelow-densitypolyethylenebottlesandacidifiedwithSeastarultrapureconcentratedhydrochloricacidasde-scribedbySedwicketal.(2000).DissolvedFe(measuredinthefiltered,acidifiedsubsamples)andtotal-dissolvableFe(TDFe,measuredintheunfiltered,acidifiedsubsamples,andassumedtoprovideameasureofdissolved+particulateFe)weredeterminedattheAntarcticCRCinHobartbyflow-injectionanalysiswithin-linepreconcen-trationonresin-immobilized8-hydroxyquinoline(Measuresetal.,1995).ThismethodhasadetectionlimitofB0.02nMFeandoverallanalyticaluncertaintiesofB20%fordissolvedFeandB30%forTDFe,overtheconcentrationrangesreportedinthisstudy(Sedwicketal.,2000).
P.N.Sedwicketal./Deep-SeaResearchII49(2002)3327–3349SAF/STF(7)441120S,631230E6Feb.19991333Table1SummaryofambientconditionsandexperimentaltreatmentsStationPosition,startdateAmbientconditionsExperimentaltreatmentsPFZ(10)461S,651E18.7mMnitrateControl(untreated)14Jan.19991.18mMsilicicacid+Si(18.3mMSi)a0.33nMdiss.iron+Fe(2nMFe)0.21mgl1Chla+Fe+Si(2nMFe,18.3mMSi)a5.4mMnitrateControl(untreated)0.5mMsilicicacid+Si(3.9mMSi)p0.19nMdiss.ironb+Fe(2nMFe)0.62mgl1Chla+Fe+Si(2nMFe,3.9mMSi)STZ(8)431180S,621310Eo0.1mMnitrateControl(untreated)12Feb.19991.4mMsilicicacid+N+P(10mMN,0.63mMP)0.09nMdiss.Fe+Fe(2nMFe)0.36mgl1Chla+Fe+N+P(2nMFe,10mMN,0.63mMP)aApproximately0.8nMFeaddedtogetherwithcontaminatedSisolutioninStation10experiment.bDissolvedFeconcentration(0.29nM)washigherthanTDFeconcentration(0.19nM)inthestartingseawateratthisstation.However,ironconcentrationsof0.19and0.29nMareanalyticallyindistinguishable,andthedissolvedFesampleisnotconsideredtohavebeencontaminated.Unfilteredseawaterfortheshipboardincuba-tionexperimentswascollectedfromawaterdepthofB20mthroughacid-cleanedpolyethylenetub-ingusinganOsmonicssolidTeflondiaphragmpump(Hutchinsetal.,1998;Sedwicketal.,1999).Thetubinginletwasloweredfromthewindwardsideoftheshipusinganon-metallicline,andseawaterwaspumpedonboardwhileheadingintothewindatB1–2knots.Thepumpedseawaterwasdischargedinsidethecleanlaboratoryvan,wheresamplecontainersusedintheexperimentswererinsedandfilled.Theseawaterwasnotscreenedtoexcludelargerorganisms,althoughitshouldbenotedthatlargerheterotrophsarelikelytobeundersampledinthismethodofseawatercollection.Thebottle-incubationexperimentsweresimilarindesigntothosedescribedbySedwicketal.(1999)andHutchinsetal.(2001).Thepumpedseawaterwasgentlymixedinacid-cleaned50-lNalgenepolyethylenecarboys,thenimmedi-atelytransferredintoacid-cleaned2.4-lNalgenepolycarbonatebottles,usedfortheexperimentsdiscussedhere,andacid-cleaned24-lNalgenepolycarbonatecarboys,usedforconcurrent‘‘dose-response’’iron-additionexperimentsthatexaminedtheresponseofthealgalcommunitytovariouslevelsofaddediron(seeBlainetal.,2002).Subsamplesfortheinitial(t¼0)analysesweretakendirectlyfromthe50-lmixingcarboys,exceptforthesubsamplesforironmeasurements,whichweretakenfromapolycarbonatetrace-metalwater-samplerthathadbeendirectlyfilledwiththepumpedseawater,andprocessedasdescribedforthewater-columnironsamples.The2.4-lexperimentalcontainerswereimmediatelyamendedwithironand/ormacronutrientsasdescribedbelow,thencapped,sealedwithPVCtape,andsetincirculatingsurfaceseawaterinsidepolyethyleneincubatorslocatedondeck.TheseincubatorsshadedthebottlestoE50%ofincidentirradiance,whichwasintendedtosimulatetheinsituirradianceintheuppermixedlayer.Tempera-turesinthedeckincubatorsweremaintainedtowithin741Cofambientsea-surfacetemperatureduringthecourseoftheexperiments.InthePFZstation(Station10)experiment,theincubationbottleswereeither(1)enrichedwithsilicicacid(+Si,18.3mM),(2)enrichedwithiron(+Fe,2nM),(3)enrichedwithironandsilicicacid(+Fe+Si,2nMand18.3mM,respectively),or(4)leftuntreatedascontrols.Ironwasaddedasasolutionofferricchloridein0.01Nhydrochloricacid,andsilicicacidwasaddedasasodiummetasilicatesolutionwhichhadbeenpurifiedusing
2333P.N.Sedwicketal./Deep-SeaResearchII49(2002)3327–3349acolumnofresin-immobilized8-hydroxyquino-line.However,thispurificationschemeprovedtobeinadequate,possiblyduetocomplexationofironbysilicicacidinbasicsolution.Shipboardanalysisofthepurifiedsodiummetasilicatesolu-tionrevealedthatitcontainedenoughironsuchthatB0.8nMironwasinadvertentlyaddedtotheincubationbottlestogetherwiththeaddedsilicicacid,thusinvalidatingthe+Sitreatmentsinthisexperiment.Anew10mMsilicicacidstocksolutionwaspreparedandpurifiedatseaforuseintheSAF/STFstation(Station7)experiment:reagentgradesodiummetasilicatewasdissolvedindeionizedwater,thenthissolutionwasfilteredthrougha0.2-mmpolycarbonatemembrane,di-lutedten-foldwithdeionizedwater,acidifiedtopHB3.5withSeastarultrapurehydrochloricacid,thenpassedovercolumnsofresin-immobilized8-hydroxyquinolineandWatersSep-PakC-18packingmedia(thelattertoremove8-hydroxyqui-nolinewhichmayhavebledfromtheresin-immobilized8-hydroxyquinolinecolumnduringpassageoftheacidicsolution;W.Landing,pers.comm.,1998).Thethus-purifiedsilicicacidsolutionwasanalyzedatseaandfoundtocontain0.94mMSiandB1nMFe,whichwasadequateforuseintheSAF/STFstationexperiment(seebelow).IntheSAF/STFstation(Station7)experiment,theincubationbottleswereeither(1)enrichedwithsilicicacid(+Si,3.9mM),(2)enrichedwithiron(+Fe,2nM),(3)enrichedwithironandsilicicacid(+Fe+Si,2nMand3.9mM,respectively),or(4)leftuntreatedascontrols.Inthiscase,thecontaminantironaddedalongwiththesilicicacidsolutionamountedtoo0.01nM,whichisas-sumednegligiblecomparedwiththeambientironconcentrationofB0.2–0.3nMinseawatercol-lectedfortheexperiment.IntheSTZstation(Station8)experiment,theincubationbottleswereeither(1)enrichedwithnitrateandphosphate(+N+P,10mMand0.63mM,respectively),(2)enrichedwithiron(+Fe,2nM),(3)enrichedwithiron,nitrateandphosphate(+Fe+N+P,2nM,10mMand0.63mM,respectively),or(4)leftuntreatedascontrols.Nitrateandphosphatewereaddedasaqueoussolutionsof20mMsodiumnitrateand20mMsodiumdihydrogenphosphate,respectively,whichhadbeentwicepurifiedusingcolumnsofresin-immobilized8-hydroxyquinoline.Shipboardanalysisofthesesolutionsshowedthemtocontain0.65nMand6.0nMiron,respectively,suchthattheironaddedalongwiththenitrateandphosphatesolutionsamountedtoo0.01nM,whichisassumednegligiblerelativetotheambientironconcentrationofB0.1–0.2nMinseawatercollectedfortheexperiment.Table1summarizestheambientconditionsandexperimentaltreat-mentsforthethreestationsinvestigated.Foreachexperimentaltreatment,duplicate2.4-lbottlesweresacriced(i.e.,completelysub-sampled)atselectedtimepointsduringthecourseofeachexperiment,withsubsamplestakenforthefollowingmeasurements:dissolvednitrate+nitrite(N+N)andsilicicacid(Si),determinedin0.45mm-filteredsolutionsbystandardmethodsusingaTechniconsegmented-flowanalysissystem;chlorophylla(Chla),determinedin>0.2mmparticulatematerialbyspectrofluorometry(Fialaetal.,1998);particulateorganiccarbon(POC)andparticulateorganicnitrogen(PON),determinedinGF/F-filteredmaterialbyelementalanalyzer(Qu-e!guineretal.,1997);particulatebiogenicsilica(BSi),determinedin>0.4mmparticulatematerialbyspectrophotometryaftersodiumhydroxidedigestion(Que!guineretal.,1997);rateofprimaryproduction,measuredbythe24-hincubationtechniquedescribedbyQue!guineretal.(1997);andrateofphotosynthesisvs.irradiance(Pvs.I),measuredbythesmall-bottleshort-termincuba-tiontechniquedescribedbyGriffithsetal.(1999).Theresultspresentedforthe24-hprimaryproductionmeasurements,Pnet;provideanesti-mateofnetprimaryproductionoverthe24-hperiodfollowingthetimeofsubsampling,inunitsofmgCm3d1.TheresultsshownfromPvs.Imeasurements,Pmax;provideanestimateofgrosslight-saturatedrateofphotosynthesisclosetothetimeofsubsampling,inunitsofmgCm3h1,andarethusnotdirectlycomparablewiththeestimateddailynetproductionrates.ItshouldbenotedthatwehavechosennottonormalizethevaluesofPmaxtobiomassusingChla,becauseironadditionisexpectedtosignificantlyalterthecellularChlacontentofoceanicphytoplank-toninsuchexperiments(GeiderandLaRoche,1994).SamplesformeasurementsofdissolvedFe
P.N.Sedwicketal./Deep-SeaResearchII49(2002)3327–3349andtotal-dissolvableFeweretakenonlyfromthestartingseawater(t¼0),duetothelimitedvolumeoftheincubationbottles.VisualidentificationandenumerationofcellslargerthanB2mmwereperformedat400timesmagnificationusinganinvertedlightmicroscopewithphasecontrast,afterovernightsettlingofB20-mlsubsamplespreservedatseawithLugol’siodinesolution.Wherepossible,morethan1000cellswerecountedineachsample.Ateachofthethreestationswhereexperimentswereconducted,asignificantcomponentofthenanoplanktoninthestartingseawaterandexperimentaltreatmentswereroughlysphericalcellsB3–10mmindiameter,bothwithandwithoutflagella,whichwerenotdefinitivelyidentified,andareheretermed‘‘mon-ads’’assuggestedbyHasle(1978).Thesecellsaredistinguishedfromthegenerallylarger,non-sphericalnanoflagellates,whichwehavetermed‘‘flagellates’’.However,itshouldbenotedthatsomeofthemoredelicatephytoplanktonspecies,includingcoccolithophorids,whichmaycompriseanimportantcomponentofthealgalcommunitynorthofthePolarFront(Findlay,1998),arepoorlypreservedinLugolsiodinesolution(Throndsen,1978).Thus,thealgalcellsthatwehaveidentifiedbymicroscopyprovideuswithanincompletepictureofphytoplanktoncommunitycomposition,inthatpicoplanktonanddelicateorcalcareousnanoplanktonwouldnothavebeencounted,sothattheseresultsmustbeconsideredassemi-quantitativeatbest.Italsoshouldbenotedthatwithourvisualcell-countingtechnique,wedidnotattempttodistinguishbetweenautotrophsandheterotrophsinthedinoflagellate,flagellate,andmonadgroupings.Foreachexperiment,selectedsamplespreservedwithLugol’siodinesolutionwerealsoexaminedusingshadow-casttransmis-sionelectronmicroscopy(TEM)attheAustralianAntarcticDivision,whichallowedagenus-levelidentificationofsomeofthemorenumerousnanoplanktoninthesamples.3.ResultsAsinotherfieldstudiesthathaveusedship-boardbioassayexperiments(e.g.,Martinetal.,33331990a;deBaaretal.,1990;DiTullioetal.,1993;Fitzwateretal.,1996;Hutchinsetal.,2001),weinferrelativealgalcommunitygrowthratesintheincubationbottlesfrom(1)accumulationofalgalbiomass,asindicatedbydecreases(drawdown)indissolvedN+NandSi,andincreasesinChla,POCandPON;and(2)relativeratesofprimaryproduction,asindicatedbythe14C-basedesti-matesofdailynetprimaryproductionrate(Pnet)andshort-termgrosslight-saturatedphotosynth-esisrate(Pmax).Theseexperimentsareprincipallyintendedtobediagnostic:wherebiomassaccumu-lationandratesofproduction/photosynthesisaresignificantlyenhancedinbottlestreatedwithiron-and/ormacronutrients,relativetocontroltreat-ments,weinferthatalgalcommunitygrowthrateislimitedbydeficienciesiniron-and/ormacro-nutrients,respectively.Thestatisticalsignificanceofdifferencesbetweenaveragevaluesofmeasuredparameterswereassessedusingtheunpairedstudent’st-testatthe95%confidencelevel.Ineachofourthreeexperiments,therewasrelativelylittleornodrawdowninnitrateoraccumulationofbiomass(Chla,POC,PON)inthecontroltreatments(seebelow).AsdiscussedbyFitzwateretal.(1996),thiswouldsuggestthattherewasnosignificantironcontaminationoftheseawatercollectedandusedintheseexperiments.3.1.PFZstationFig.2ashowswater-columnprofilesoftempera-ture,salinity,density(st),fluorescence,N+N,Si,anddissolvedFeobtainedatthePFZstation(Station10).Heretheupper20mofthewatercolumnwasweaklystratified,probablyasaresultofsurfacewarming,withawell-definedpycnoclinebetweendepthsofB40and60mthatwasroughlycoincidentwithamaximuminfluorescence.Therelativelyhighconcentrationsofnitrate(B20mM)andlowconcentrationsofsilicicacid(1–2mM)intheupperwatercolumnaretypicalofPFZwatersduringmidtolatesummer(RintoulandTrull,2001;Nelsonetal.,2001).Withintheeuphoticzone,dissolvedironconcentrationswerehighest(B0.4nM)neartheseasurface(15mdepth)andatthebaseofthepycnocline(75mdepth),andlowest(B0.2nM)nearthebaseoftheuppermixed
 () 3334P.N.Sedwicketal./Deep-SeaResearchII49(2002)3327–3349(a)    Station 1' - PFZ005 001 051 002 052 003 02468103333.53434.5352626.52727.500.51010203000.20.40.60.81potential temp. (˚C)salinitytfluorescenceN+N (µM)dissolved Fe (nM)Si (µM)(b)   Station 7- SAF/STF005 001 051 002 052 003 101112131433.53434.53535.525.52626.52700.510510152000.20.40.60.81potential temp. (˚C)salinitytfluorescenceN+N (µM)dissolved Fe (nM)Si (µM)(c)    Station 8 - STZ005 001 051 002 052 003 10121416182034.53535.53636.525.52626.52700.51051000.20.40.60.81potential temp. (˚C)salinitytfluorescenceN+N (µM)dissolved Fe (nM)Si (µM)Fig.2.Verticalprofilesofpotentialtemperature,salinity,st;fluorescence,N+NandSi,anddissolvedFeat(a)PFZstation,(b)SAF/STFstation,and(c)STZstation.Fluorescencedatawerecollectedbetween18:30and08:30localtime.
P.N.Sedwicketal./Deep-SeaResearchII49(2002)3327–3349layer(45mdepth).Total-dissolvableFeconcen-trations(datanotshown)werewithintheanaly-ticaluncertaintyofthedissolvedFeconcentrationsthroughouttheupperwatercol-umn.Thedissolvedironconcentrationsarehigherthanvaluesofo0.2–0.3nMFethathavebeenreportedforsurfacewatersinotheropen-oceansitesneartheAntarcticPolarFront(e.g.,Martinetal.,1990b;deBaaretal.,1999;MeasuresandVink,2001),andmaythusreflectironinputsfromsedimentsontheCrozetIslandplatform(locatedtothewestofStation10),asreporteddownstreamfromtheKerguelenIslandplatform(Blainetal.,2001;Bucciarellietal.,2001),aswellasrecentinputsofmineralaerosol(presumablyfromsouth-ernAfrica)attheseasurface,asobservedinthecentralnorthPacific(Brulandetal.,1994).Atthisstationwesetouttoexaminethepotentialrolesofbothironandsilicicacidinlimitingalgalgrowthrate,giventhatbothspecieswerepresentatrelativelylowconcentrationsintheuppermixedlayer(B0.3nMand1.2mM,respec-tively).Thus,theincubationbottleswereamendedwithiron(+Fe),silicicacid(+Si),andiron+si-licicacid(+Fe+Si)(seeTable1).However,asdetailedinSection2,thesilicicacidstocksolutionusedinthisexperimentwassufficientlycontami-natedwithironsuchthatourexperimentaltreatmentsmustbeconsideredasonly+Feand+Fe+Si(i.e.the+Siand+Fe+Sitreatmentseachcontainedsignificantadditionsofbothironandsilicicacid).ResultsfromthePFZstationexperimentareshowninFig.3.Littleornosignificantchangesindissolvednutrients,algalbiomassandalgalproductionrateswereobservedduringthefirst6daysoftheincubationexperi-ment,butafter9daystherehadbeensignificantincreasesinN+Ndrawdown,Chla,POC,PONandPnetinthe+Fe,+Siand+Fe+Sitreatmentsrelativetothecontrolbottles.Significantdiffer-encesbetweenthe+Fe,+Siand+Fe+SitreatmentswereonlydiscernableintheBSiandPmaxdata,withthegreatestincreasesinBSiandPmaxobservedintheFe-contaminated+Sitreat-ments(althoughPmaxmeasurementswerenotreplicatedforthesetreatments),followedbythe+Fe+Siand+Fetreatments.After9daysincubation,theaveragemolarSi:Ndrawdown3353ratios(drawdowninSi/drawdowninN+N)werezerointhecontrolbottles(nomeasurableSidrawdown),o0.1inthe+Fetreatments,andnear0.2inthe+Siand+Fe+Sitreatments.Inthisexperiment,thenanoplanktonandmicroplanktoncountedbymicroscopywereiniti-allydominatedbyB3–10mmmonads(roughlysphericalcellswhichwerenotdefinitivelyidenti-fied),withlessernumbersofdinoflagellates,pennatediatoms(includingPseudo-nitzschia,Navicula,andFragilariopsisspp.),andotherunidentiablecells(Fig.4a).Themicroscopeobservationsindicatelittlechangeinalgalcommunitycompositioninthecontroltreatmentsafter9daysincubation,whereasthelargeincreasesinalgalbiomassinthe+Fe,+Siand+Fe+Sitreatmentswereapparentlyduetoincreasesinthenumberofsmall,lightlysilicifiedpennatediatoms,mainlyofthegenusPseudo-nitzschia,andmonads(Fig.4a).The+Fetreatmentscontainedsimilarabundancesofthepennatediatomsandmonads,whereasthetreatmentscontainingbothFeandSiwerenumericallydominatedbypennatediatoms,whichweremostnumerousintheFe-contaminated+Sitreatments(Fig.4a).ObservationsmadeusingTEMsuggestthatthemonadsthatgrewinthe+Fe,+Siand+Fe+Sitreatmentsweredominatedbyhapto-phytes,includingChrysochromulinaandPhaeocys-tisspecies(A.Davidson,pers.comm.2001).Inthisexperimentonly,subsampleswerealsoanalyzedbyflowcytometry,withresultssuggest-ingthatpicoeukaryoteswereatmostaroundhalfasabundantasnanoeukaryotes,andthatcyano-bacterialnumbersremainedrelativelylowinallexperimentaltreatments.Theflowcytometrydataindicateincreasesinthenumbersofbothpicoeu-karyotesandnanoeukaroytesinthe+Fe,+Si,and+Fe+Sitreatments,relativetocontrolsamples,withnanoeukaryotesshowingthegreat-estincreasesinrelativeabundance(C.Dubreuil,pers.comm.1999).Takentogether,thechemicalandbiologicalresultsofthisexperimentindicatethatironadditionincreasedalgalcommunitygrowth,pri-marilybysmallpennatediatoms,whichprobablyaccountedformostoftheaccumulatedbiomass,andmonads.Relativetoadditionofironalone,
3363P.N.Sedwicketal./Deep-SeaResearchII49(2002)3327–3349controleF+Station 1' - PFZ+Si (+Fe)+Fe+Si52020251510101550002468100246810incubation time (d)incubation time (d)201000057510050105250002468100246810incubation time (d)incubation time (d)50024051300120510002468100246810incubation time (d)incubation time (d)052030020510200101050002468100246810incubation time (d)incubation time (d)0PFimga.x3v.s.Rienscuultbsatoifonbottitmlee-.inNcuotbeattihoantetxhpeer+imSientrtseaftomretnhtesPwFeZrestcaotnitoanm(iSntaattieodnw1it)h,isrhoonwiinngthiNs+exNp,erSii,meCnhtl.a,POC,PON,BSi,Pnetand
P.N.Sedwicketal./Deep-SeaResearchII49(2002)3327–33497333Fig.4.Abundancesof>2mmalgalcellscountedbylightmicroscopyintheinitialandfinalsamplesfromexperimentsat(a)thePFZstation,(b)theSAF/STFstation,and(c)theSTZstation.additionofbothironandsilicicacidhadnofurthersignificanteffectonnutrientdrawdown,accumulationofbiomassasestimatedfromChla,POCandPON,orestimatednetprimaryproduc-tionrate,suggestingthatcommunitygrowthwasnotimmediatelylimitedbysilicicaciddeficiency.However,theelevatedBSiandPmaxvaluesandenhancedabundanceofdiatomsobservedinthe+Siand+Fe+Sitreatmentsindicatethataddi-tionofsilicicacid(incombinationwithiron)didinfluencephytoplanktoncommunitycomposition,biogenicsilicaproductionandgrosslight-satu-ratedrateofphotosynthesis,bypromotingthegrowthofsmallpennatediatoms.ItiscuriousthattheFe-contaminated+Sitreatmentsachievedsignificantlyhigherconcentrationsofbiogenicsilicaandgreaternumbersofdiatomsthanthe+Fe+Sitreatments,giventhatthe+Fe+Sitreatmentscontainedthesameconcentrationofsilicicacidasthe+SitreatmentsandanadditionalB1.2nMiron.WespeculatethatthecontaminantFeaddedwiththeSistocksolutionwascomplexed
  • Univers Univers
  • Ebooks Ebooks
  • Livres audio Livres audio
  • Presse Presse
  • Podcasts Podcasts
  • BD BD
  • Documents Documents