La lecture en ligne est gratuite
Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres
Télécharger Lire

LINTEGRALE DE LEBESGUE SUR UN INTERVALLE DE RI

De
48 pages
Niveau: Supérieur, Licence, Bac+3
LINTEGRALE DE LEBESGUE SUR UN INTERVALLE DE RI TELLE QUELLE PEUT ETRE ENSEIGNEE EN LICENCE Par Robert DEVILLE Integration des fonctions en escalier Soit I un intervalle de RI Nous dirons quune fonction I RI est en escalier sil existe des intervalles bornes I I I n I et c c c n RI tel que n X k c k I k On sait denir lintegrale des fonctions en escalier par Z I n X k c k I k n X k mI k c k o u si I est un intervalle dextremites a b mI b a designe la longueur de I Proprietes de lintegrale des fonctions en escalier Lintegrale de f ne depend pas de la representation choisie linearite Si f et g sont des fonctions en escalier et si et sont des reels alors f g est une fonction en escalier et Z f g Z f Z g positivite Si f et g sont des fonctions en escalier a valeurs reelles et si f g alors Z f Z g Si f RI est en escalier alors jf j RI est en escalier et Z f Z jf j Une fonction f est dite integrable si elle peut etre approchee par une suite de fonctions en escalier et lintegrale de f est alors la limite des

  • nition de lintegrale au sens de lebesgue

  • dite integrable

  • fx dx

  • lintegrale au sens de riemann

  • convergence dominee

  • escalier


Voir plus Voir moins

Les ´el´ements spectraux: une m´ethode pour le petaflop
...(et au-del`a)
Michel O. Deville
Ecole Polytechnique F´ed´erale de Lausanne
Facult´e des Sciences et Techniques de l’Ing´enieur
Institut de G´enie M´ecanique
Laboratoire d’Ing´enierie Num´erique
Lausanne-Suisse
1Outline
⋄ Mathematical model, weak formulation
⋄ Spatial discretization: Spectral Element Method and time
discretization
⋄ Solvers and preconditioners
⋄ Pressure computation
⋄ Petaflop?
⋄ Flow over a circular cylinder between two parallel vertical walls
⋄ Conclusions
Reference: M.O. Deville, P.F. Fischer, E.H. Mund, High-Order
Methods for Incompressible Fluid Flow, Cambridge University
Press, Cambridge, 2002.
2The mathematical model : the Navier-Stokes equations
Assumption: viscous Newtonian incompressible fluid
σ = −pI+2μd,
1
T
d = (∇ v+(∇v) )
2
Navier-Stokes equations
∂v
+Re(v∇v) = −∇p+ △v+f, in Ω, for t≥0,
∂t
∇v = 0, in Ω, for t≥0
+ BC and initial conditions
Reynolds number
UL
Re=
ν
3The weak formulation
1 d 2
Find (v(t),p(t))∈X =H (Ω) ×Z =L (Ω) such that for almost
0 0
every t∈(0,T)
d
(v(t),u)+(∇v,∇u)−(∇u,p(t)) = −ReC(v(t);v(t),u)
dt
+ (f,u), ∀u∈X,
−(∇v(t),q) = 0, ∀q∈Z
0
v(0) = v .
Z
C(v(t);v(t),u) = (v∇v)udΩ
Ω
4Spatial discretization : the spectral element method
(SEM)
Space approximation : Tensor product of Lagrange-Legendre
polynomials of degree N
N M
XX
b
u (ξ,η) = u π (ξ)π (η) ξandη∈[−1,1]=Ω
N
ij i j
i=0 j=0
2 ′
(−1) (1−ξ )L (ξ)
N
π (ξ) = , 0≤j≤N, ξ∈[−1,1]
j
N(N +1) (ξ−ξ )L (ξ )
j N j
Interpolation points: roots of
2 ′
b
(1−ξ )L (ξ) = 0, ξ∈[−1,1]=Ω
N
5Spatial discretization : the spectral element method
(SEM)
Quadrature rule: Gauss-Lobatto-Legendre (GLL)
Z
N
1
X
u(x)dx ≈ ρ u(ξ )
k k
−1
k=0

ξ : ξ =−1, ξ =1, zeroes of L (x), 1≤k≤N−1,
k 0 N
N
2 1
ρ = , 0≤k≤N
k
2
N(N +1)[L (ξ )]
N k
Remark: Quadrature rule exact for u∈IP
2N−1
6SEM applied to a 1D elliptic problem
•••••• •
•••••• •
•••••• •
•••••• •
•••••• •
••••••••••• •
•••••• •
•••••• •
•••••• •
•••••• •
•••••••••••• •
•••••• •
•••••• •
••••••

•••••• •
•••••• •
(a) (b)
Figure 1: Global stiffness matrix (a) and mass matrix (b) structures
of a spectral element approximation with three elementsand N =5.
7Error estimation and Matrix considerations
ub exact solution (Canuto-Quarteroni)
If σ≫1 then
−N
σ
ku −ubk 0 ≤ CN kubk , σ≫1
N H
H
w w
Hu = Mf.
M is diagonal and H is symmetric and positive definite.
Solver: preconditioned conjugate gradient (PCG)
4
Condition number? O(N )
Preconditioners: Finite differences (Orszag ’80), Finite elements
(Canuto & Quarteroni, ’85, Deville & Mund, ’85-’92), Overlapping
Schwarz (P.F. Fischer, ’97), Finite volumes (Labrosse et al., ’04)
8SEM: two-dimensional local tensor-product nodal basis
9
+ %)*(
% !"%!%++