La lecture en ligne est gratuite
Le téléchargement nécessite un accès à la bibliothèque YouScribe
Tout savoir sur nos offres
Télécharger Lire

Nº ordre Année

De
129 pages
Niveau: Supérieur

  • dissertation


Nº ordre : 2272 Année 2005 Thèse préparée au Laboratoire d'Electrotechnique et d'Electronique Industrielle de l'ENSEEIHT Unité Mixte de Recherche N° 5828 au CNRS THESE Présentée pour obtenir le titre de DOCTEUR DE L'INSTITUT NATIONAL POLYTECHNIQUE DE TOULOUSE Spécialité : Génie Electrique Par Silverio ALVAREZ HIDALGO Ingénieur ENSEEIHT – DEA Génie électrique Characterisation of 3.3kV IGCTs for Medium Power Applications Soutenue le 3 novembre 2005 devant le jury composé de: MM. G. COQUERY Président J. R. TORREALDAY Rapporteur F. LABRIQUE Rapporteur E. CARROLL H. CARON P. LADOUX

  • condiciones de ensayo en modo de funcionamiento real

  • aplicabilidad de estos componentes en aplicaciones específicas

  • corporate research

  • research group

  • chopper ac

  • dinámicas de los convertidores de media

  • compensation application

  • champ d'application


Voir plus Voir moins

Nº ordre : 2272 Année 2005
THESE
Présentée
pour obtenir le titre de
DOCTEUR DE L’INSTITUT NATIONAL POLYTECHNIQUE DE TOULOUSE
Spécialité : Génie Electrique
Par
Silverio ALVAREZ HIDALGO
Ingénieur ENSEEIHT – DEA Génie électrique
Characterisation of 3.3kV IGCTs for
Medium Power Applications
Soutenue le 3 novembre 2005 devant le jury composé de:
MM. G. COQUERY Président
J. R. TORREALDAY Rapporteur
F. LABRIQUE Rapporteur
E. CARROLL
H. CARON
P. LADOUX
Thèse préparée au Laboratoire d'Electrotechnique et d'Electronique Industrielle de l'ENSEEIHT
Unité Mixte de Recherche N° 5828 au CNRS


Abstract
The Low Voltage IGCT (3.3kV) is developed to provide a semiconductor able to work at high
switching frequencies (>1kHz), preserving its “high current” capacity (4kA). The ultimate goal is to
increase the dynamic performances of medium/high power converters, thus extending their
application field.
To characterise the experimental samples of 3.3kV IGCTs, an opposition method based test
bench was developed. This method allows the components to be evaluated at different test
conditions in real operation without the need of several megawatt power supplies.
Once the samples were characterised, the applicability analysis of these components on specific
applications related to the French railway network (SNCF) is performed.
Finally, a reactive power compensation application for single-phase systems is studied in detail
and a 100kVAR IGCT based set up is built.
Keywords
• 3.3 kV IGCT • Medium Voltage • Medium Power
• Opposition Method • STATCOM • AC Chopper



Résumé
Le développement des IGCT Basse Tension (3,3kV) vise un composant capable de travailler à
fréquence élevée (>1 kHz) tout en gardant sa capacité "fort courant" (4kA). L’objectif final est
d’augmenter les performances dynamiques des convertisseurs moyenne/forte puissance et
d’étendre ainsi leur champ d’application.
Pour la caractérisation des échantillons expérimentaux des IGCT 3,3kV, un banc d’essais basé
sur une méthode d’opposition a été développé. Cette méthode permet l’évaluation des
composants sous différentes conditions d’essai en mode de fonctionnement réel sans nécessité
de sources d’alimentation de plusieurs MW.
Une fois les échantillons caractérisés, l’analyse de l’applicabilité de ces composants dans des
applications spécifiques aux réseaux ferroviaires SNCF est abordée.
Finalement, une application de compensation de puissance réactive pour des réseaux
monophasés a été étudiée en détail et une maquette de 100kVAR à base de IGCTs a été
réalisée.
Mots Clefs
• IGCT 3.3kV • Moyenne Tension • Moyenne Puissance
• Méthode d’opposition • Compensateur Statique • Gradateur MLI



1
Resumen
Los IGCT de Baja Tensión (3.3kV) se desarrollan para proporcionar un componente capaz de
trabajar a frecuencia elevada (>1kHz) manteniendo su capacidad de “alta corriente” (4kA). El
objetivo final es aumentar las prestaciones dinámicas de los convertidores de media/alta
potencia y ampliar así su campo de aplicación.
Para caracterizar la muestras experimentales de IGCTs 3.3kV, se ha desarrollado un banco de
ensayo basado en el método de oposición. Este método permite evaluar los componentes bajo
diferentes condiciones de ensayo en modo de funcionamiento real sin necesidad de fuentes de
alimentación de varios megavatios.
Una vez que las muestras han sido caracterizadas, se aborda el análisis de la aplicabilidad de
estos componentes en aplicaciones específicas relacionadas con la red ferroviaria Francesa
(SNCF).
Finalmente, se estudia en detalle una aplicación de compensación de potencia reactiva para
redes monofásicas y se realiza una maqueta de 100kVAR con IGCTs.
Palabras Clave
• IGCT 3.3 kV • Media Tensión • Media Potencia
• Método de oposición • STATCOM • Chopper AC



2
Acknowledgements
The work presented in this dissertation was carried out in the Static Converters research group of
the Laboratoire d’Electrotechnique et d’Electronique Industrielle, LEEI (INPT-ENSEEIHT-CNRS).
This work takes place as part of a collaboration contract between the LEEI and ABB Switzerland
Ltd. Semiconductors.
After three and a half years of research work, I would like to first thank Mr. Y. Cheron, director of
the LEEI, for accepting me to the laboratory. Next, I would like to express my gratitude to the
advisory committee members of my PhD thesis:
• Mr. Gérard COQUERY, research manager of the New Technologies Laboratory
(LTN) at the French National Institute for Transport and Safety Research (INRETS),
for accepting to be part of my PhD advisory committee.
• Mr. José Ramón TORREALDAY, Professor and department head of the Industrial
Electronics department of the Polytechnic High School at the University of
Mondragon (EPS-MU), Spain. It is an honour to have you as reviewer of my
dissertation and I would like to express my sincere appreciation to you not only as an
exceptional schoolmaster, but also for your personable skills.
• Mr. Francis LABRIQUE, Professor and head of the Electrotechnical and
Instrumentation Laboratory (LEI) of the Applied Science Faculty at the Catholic
University of Louvain (FSA-UCL), Belgium, for the interest shown about my work and
accepting to be a reviewer of my dissertation.
• Mr. Eric CARROLL, Marketing Manager of ABB Switzerland Ltd. Semiconductors,
for his support as one of the main driving forces of this work, for his always much
appreciated comments and for being part of my PhD advisory committee.
• Mr. Hervé CARON, Engineer of the Department of Fixed Installations for Electric
Traction (IGTE) at the French National Railway Company (SNCF), for his
collaboration to this study from the industrial point of view and his participation as a
committee member.
• Mr. Philippe LADOUX, Professor at the Engineering National High School
ENSEEIHT of the Polytechnic National Institute of Toulouse (INPT), head of “Static
Converters” research group at the LEEI and supervisor of this PhD. I would like to
express my sincere gratitude for his wise guidance and support, encouragement and
trust in me. It has been an honour and pleasure to work and share many very good
moments with you. Thank you very much for your friendship.
Throughout the development of my PhD, I have had the opportunity to take part of three different
communities. For the first two and a half years, I shared my time between the LEEI in Toulouse,
France and CIDAE (Power Engineering and Electrotechnologies Research Centre of the
Mondragon University) in Mondragon, Spain, under the frame of a research collaboration
established between both institutions. The last year, I had the opportunity to finish my PhD as an
internship student in the ABB Corporate Research Centre in Baden-Dättwil, Switzerland. I would
3 Acknowledgements
like to thank all these institutions for the support to successfully finish my PhD. I would also like to
express my gratitude to the very nice and friendly people that made my work and life more
interesting and easier during these years. In some way, this PhD is also yours.
In Mondragon, I would like to especially render thanks to Professor Mikel Sanzberro for his
teaching and personable skills that stimulated my enthusiasm for power electronics. I will not
forget all the highly valued colleagues (professors, lecturers, assistants, students, etc.) that first
suffered my stay in the “Vehículo Eléctrico” office and then in “GARAIA”: Jose Maria Canales (our
“Channels”), Jonan Barrena (“mi Jonan”), Xabi Agirre (I loved when we were flying together to
Barcelona), Miguel Rodriguez (“del mundo mundial”), Gonzalo Abad, Gaizka Almandoz, Josu
Galarza (“you are the next”), Estanis Oyarbide, Sergio Aurtenetxe, Iñigo Garin (“do not annoy too
much the “abuelo””), Alex Munduate, Agurtzane Aguirre (“I still owe you a “lomo” from
Extremadura, but at least you had some sweet Swiss chocolate”), Raul Reyero, Ion Etxeberria
and his “ladies” Maider, Haizea, Amaia and Elsa, and many others. We had very good times
together. I will always remember you all.
In Toulouse, again, I would like to mention many people that I really appreciate. Amongst them, I
firstly want to give thanks to Professor Henri Foch for his masterful lessons in Power Electronics,
which made me love this topic. I also want to express my gratitude to the professors and
researchers of the LEEI-ENSEEIHT for their excellent contribution to my formation, such as Maria
Pietrzak-David, Michel Metz, Frederic Richardeau, Thierry Meynard, Henri Schneider, etc.
Special thoughts also go to the mates of the LEEI 102 office during my first training period at the
LEEI: Bruno Sareni (“the atypical French guy that does not like cheese, wine or bread, but loves
cooking, (you know that I am always ready to try your experiments) and is an extremely good
cards player”), Fernando Iturriz and Philippe Baudesson, all of them exemplary researchers and
very friendly people. With all of them, a very special link to the LEEI was built on me. This link has
been reinforced even more during my PhD thanks to many other people like Philippe Ladoux (the
most famous jokester of the LEEI), Jean Marc Blaquiere (“we had a very good time playing with
the 3MW toy we built, having long talks and doing some hiking in the Pyrenees”), Stephan Caux
(“the LEEI most gourmand guy, who should ask Bruno for his dessert recipe book”), Didier
Ginibriere and many other PhD students (Paul Etienne Vidal, Gianluca Postiglione, Herve Feral,
Guillaume Fontes, Grace Gandanegara, Christoph Conilh, Wojciech Szlabowicz, Ali Ali Abdallah,
Bayran Tounsi, Frederic Alvarez, etc.). I would like to also thank the administrative staff
(Mesdames Bodden, Pionnie, Mebrek and Charron) for their valuable help.
In the ABB Corporate Research at Baden, I would like to give thanks to the Automation Devices
department head, Alex Fach, the Power Electronics R&D Program Manager, Amina Hamidi, and
specially to the power electronics systems department group leaders, first Luc Meysenc (“still
claims that the best wine is grown in France”) and then Peter Barbosa (“do not forget the squash
tricks that we practised together, I will check them in la Rioja”), for allowing me to finish my PhD
in their research group. I want to also express my gratitude to Christoph Haederli, my office mate
in the department, for the very interesting discussions we had together, and also to Franz Wildner
(“the books and newspaper eager reading man that knows a lot of everything, I loved the long
discussions that you animate”) and Manfred Winkelnkemper for their valuable help during the
development of the final set-ups. I also want to thank many colleagues that made my work and
stay during the cold winter days in Switzerland easier: Philippe Karutz, (“the small 1.97cm tall
German guy, alias Felipito, who was always eager for a Spanish tortilla”), Francisco Canales (“my
first Spanish speaking connection there, a very nice Mexican guy with a very sarcastic sense of
humour”), Satish Gunturi (“who expected me to lose because I came from Toulouse, we will see
that squash match when your hand is recovered”), Anthony Karloff (“the Canadian that almost
became my official English grammar editor”), Antonio Coccia (“il capo Antogniolli”), Antonio Balta
(“my second Spanish connection, half German, half Spanish”), Nikola Celanovic, Didier Cottet,
4 Acknowledgements
Wolfgang Knapp, Sunita Kalkar, Mervi Jylhakallio, Jan-Henning Fabian, Samuel Hartmann,
Toufan Chaudhuri, Koen Macken, Lindsey Westover, and all the rest.
From a more intimate point of view, but no less important, I would like to express my gratitude
and love to the members of my family that always supported, encouraged and cared for me. This
achievement has been possible thanks to you. To my parents, Nicanor and Teresa, that worked a
lot and overcame very hard times to raise their children. To my brothers and sisters, Juan, Candi,
Sacra and Nica, who were always taking care of me, the little boy of the family! To the memory of
my uncle Antonio, who left too early and taught me honesty and dignity. To the memory of my
grand mother Candida. To my nephews Jairo (“I saw me on you some months ago, I am getting
older”) and Mikel, to my little nieces Gloria (“already a well-bred young lady”), Marta, Leire, Nerea
and Saioa (“it is so difficult for your uncle to say who is the most lovely among you! However, I
know very well who is the most “toady”. Well, Ludi would have said “lovesome”), and to my
closest relative-in-laws. A big part of you is and will always stay with me.
Finally, I would like to dedicate this achievement and express all my love to Conchi. With your
understanding, encouragement, patience and love, everything was possible. Mi Bollo, after more
than nine years of relationship in the distance, finally we are going to be able to settle down, raise
a family and grow old together. The “PhD” of our life together is going to last infinitively longer
than this one. I love you.













a mi familia,
a Conchi,
Con todo mi amor.

5 Contents
Contents
ACKNOWLEDGEMENTS ........................................................................................... 3
CONTENTS .................................................................................................................... 6
INTRODUCTION ........................................................................................................ 10
1 CHAPTER 1. IGCT, the Medium Voltage High Power Semiconductor ........ 12
1.1 INTRODUCTION................................................................................................ 12
1.2 MEDIUM VOLTAGE HIGH POWER SEMICONDUCTORS OVERVIEW.................... 12
1.2.1 Thyristors 14
1.2.2 Gate Turn Off Thyristors (GTO) ............................................................ 16
1.2.3 Integrated Gate Commutated Thyristors (IGCT) ................................... 18
1.2.4 Insulated Gate Bipolar Transistors (IGBT) ........................................... 20
1.2.5 Fast Recovery Diodes............................................................................. 24
1.3 IGCT IMPLEMENTATION ................................................................................. 26
1.3.1 Electrical Issues...................................................................................... 26
1.3.1.1 SOA (Safe Operating Area)................................................................ 26
1.3.1.2 Gate driver.......................................................................................... 27
1.3.1.3 dI/dt limitation, clamp circuit ............................................................. 29
1.3.2 Mechanic and Cooling Issues................................................................. 31
1.3.2.1 The mechanical assembly................................................................... 32
1.3.2.2 Heatsinks............................................................................................ 33
1.4 IGCT FUTURE TRENDS.................................................................................... 33
1.4.1 10kV HV IGCTs...................................................................................... 34
1.4.2 Dual Gate Turn-off Thyristor 34
1.4.3 SOA Improvement................................................................................... 35
1.4.4 3.3kV LV IGCTs 35
1.5 IGCT VS. IGBT............................................................................................... 36
1.5.1 Ratings and Mechanical Lay Out ........................................................... 36
1.5.2 Driver ..................................................................................................... 38
1.5.3 Cooling System ....................................................................................... 38
1.5.4 Reliability 39
1.5.5 Power Semiconductor Main Failure Sources......................................... 40
1.5.5.1 Thermal cycling.................................................................................. 40
1.5.5.2 Cosmic radiation................................................................................. 41
1.5.5.3 Partial discharges................................................................................ 42
1.5.5.4 Gate unit failure 42
1.6 CONCLUSIONS ................................................................................................. 42
2 CHAPTER 2. 3.3 kV IGCTs Characterisation.................................................. 44
2.1 INTRODUCTION................................................................................................ 44
2.2 HIGH POWER SEMICONDUCTORS CHARACTERISATION.................................... 45
2.2.1 Power Losses Characterisation Standard Tests..................................... 45
6 Contents
2.2.2 Opposition Method Principle ................................................................. 46
2.3 OPPOSITION METHOD BASED TEST BENCH FOR 3.3KV IGCTS........................ 47
2.3.1 Test Bench Power Stage ......................................................................... 48
2.3.2 Control Strategy ..................................................................................... 48
2.3.2.1 Output current closed loop control ..................................................... 49
2.3.2.2 FPGA functions.................................................................................. 52
2.3.3 Component Dimensioning ...................................................................... 54
2.3.3.1 Test bench power losses estimation ................................................... 55
2.3.3.2 Output inductor, L ............................................................................. 56 S
2.3.3.3 Input capacitor, C ............................................................................ 57 DC
2.3.3.4 dI/dt inductor and RCD clamp circuit components............................ 58
2.3.4 Test Bench Lay-out ................................................................................. 59
2.3.4.1 Power stage components.................................................................... 60
2.3.4.2 Water cooling system ......................................................................... 62
2.4 3.3KV IGCTS CHARACTERISATION................................................................. 63
2.4.1 3.3kV IGCT Characterisation Results.................................................... 65
2.4.1.1 IGCT switching losses........................................................................ 66
2.4.1.2 IGCT on state losses........................................................................... 68
2.4.2 FWD Characterisation Results............................................................... 70
2.4.2.1 FWD switching losses 70
2.4.2.2 FWD on state losses 72
2.4.3 Gate Unit Power Supply Requirements.................................................. 74
2.4.4 Clamp Circuit Power Losses .................................................................. 75
2.5 3.3KV IGCT – IGBT COMPARISON................................................................. 77
2.6 CONCLUSIONS ................................................................................................. 80
3 CHAPTER 3. Potential Applications for 3.3 kV IGCTs................................... 81
3.1 INTRODUCTION................................................................................................ 81
3.2 UNIVERSAL POWER LOSSES ESTIMATOR ......................................................... 82
3.2.1 State of the Art for Semiconductor Power Losses Estimation................ 82
3.2.1.1 Analytic estimation............................................................................. 83
3.2.1.2 Estimation applying ideal switches simulation .................................. 83
3.2.1.3 Estimation applying real semiconductor models simulation.............. 83
3.2.2 Description of the Proposed Universal Power Losses Estimator .......... 84
3.2.2.1 Universal power losses estimator elements........................................ 85
3.2.2.2 ator validation ...................................... 88
3.3 POTENTIAL APPLICATIONS FOR 3.3KV IGCTS................................................. 89
3.3.1 Harmonic Currents Compensation for 1.5kV DC SNCF Substations.... 91
3.3.1.1 1.5kV DC SNCF Substations ............................................................. 91
3.3.1.2 24-pulse diode rectifier....................................................................... 95
3.3.1.3 Active filtering using 3.3kV IGCTs ................................................... 96
3.3.1.4 Active rectification using 3.3kV IGCTs........................................... 107
3.3.1.5 Harmonic currents compensation solution discussion...................... 112
3.3.2 Reactive Power Compensation for 25kV/50Hz Single-phase SNCF
Substations............................................................................................................ 112
3.3.2.1 Voltage source inverter based topologies......................................... 114
3.3.2.2 PWM AC chopper ............................................................................ 123
3.3.2.3 Reactive power compensation solution discussion .......................... 126
3.4 CONCLUSIONS ............................................................................................... 127
7 Contents
4 CHAPTER 4. Single-phase STATCOM with 3.3kV IGCT based Step-Down
PWM AC Choppers .................................................................................................. 128
4.1 INTRODUCTION.............................................................................................. 128
4.2 DIRECT AC/AC CONVERSION WITH PWM AC CHOPPERS ............................ 128
4.2.1 Overview of PWM AC Choppers Topologies ....................................... 129
4.2.2 Modulation of PWM AC Choppers....................................................... 132
4.2.3 Modelling and Control of PWM AC Choppers .................................... 134
4.3 3MVAR PWM AC CHOPPER BASED STATCOM FOR SNCF SINGLE-PHASE
25KV/50HZ SUBSTATIONS WITH 3.3KV IGCTS ........................................................ 136
4.3.1 Design of a 1MVAR Step-down PWM AC Chopper Module................ 138
4.3.1.1 Dimensioning of the power stage components................................. 138
4.3.1.2 Control system of the step-down PWM AC Chopper ...................... 146
4.3.1.3 AC Chopper PWM pattern generation ............................................. 153
4.3.2 Simulation of the PWM AC Chopper 3 MVAR STATCOM .................. 154
4.4 CONCLUSIONS ............................................................................................... 162
5 CHAPTER 5. Practical Evaluation of Single-phase STATCOM based on
StepDown PWM AC Choppers ....................................................................................... 163
5.1 INTRODUCTION.............................................................................................. 163
5.2 START-UP AND SHUTDOWN SEQUENCES OF THE PWM AC CHOPPER............ 163
5.2.1 Network Connection ............................................................................. 164
5.2.2 Switching Operation Start-up synchronisation .................................... 165
5.2.3 Shutdown sequence............................................................................... 166
5.3 PWM AC CHOPPER TEST BENCH CONTROL SYSTEM 167
5.3.1 Overview of the FPGA Program functions........................................... 169
5.3.1.1 AC Chopper PWM Modulator ......................................................... 169
5.3.1.2 Input voltage V level signals generation ..................................... 170 NET
5.3.1.3 PWM AC Chopper state machine .................................................... 171
5.3.1.4 PWM AC Chopper switching logic.................................................. 172
5.3.1.5 Gate driver software......................................................................... 172
5.3.1.6 Fault handler..................................................................................... 173
5.3.2 Overview of the MATLAB/Simulink program functions....................... 173
5.4 PRACTICAL EVALUATION OF SINGLE-PHASE STEP-DOWN PWM AC CHOPPERS
IN STATCOM OPERATION ........................................................................................ 175
5.4.1 Low Voltage/Power IGBT Based PWM AC Chopper .......................... 175
5.4.1.1 Validation tests of the IGBT Based PWM AC Chopper.................. 176
5.4.2 Medium Voltage IGCT Based PWM AC Chopper ............................... 177
5.4.2.1 Validation tests of the IGCT Based PW.................. 180
5.5 CONCLUSIONS ............................................................................................... 182
CONCLUSION & FUTURE PROSPECTS............................................................. 184
REFERENCES ........................................................................................................... 186
6 APPENDIX 1. 2-Level VSI and Step-down AC-Chopper Current Ripple
Estimation for Single Phase Reactive Power Compensation.................................. 192
6.1 INTRODUCTION.............................................................................................. 192
6.2 CURRENT RIPPLE EVALUATION OF A FULL BRIDGE 2-LEVEL VSI ................. 192
6.2.1 Current ripple evaluation in DC / DC operation ................................. 193
6.2.2 Current ripple evaluation in DC / AC operation (reactive power
compensation)....................................................................................................... 195
8

Un pour Un
Permettre à tous d'accéder à la lecture
Pour chaque accès à la bibliothèque, YouScribe donne un accès à une personne dans le besoin